To appear in Proc. of IEEE INFOCOM, Alaska, May, 2007(preprint)

Self-Configuring Information Management for
Large-Scale Service Overlays

Jin Liang , Xiaohui GU and Klara Nahrstedt
*Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801
{jinliang, klarg}@cs.uiuc.edu
fDepartment of Distributed Computing
IBM T.J. Watson Research Center, Hawthorne, NY 10532
Xiaohui@us.ibm.com

w overlay management O query Monitoring

nodes clients

nodes sensors

Abstract— Service overlay networks (SON) provide important
infrastructure support for many emerging distributed applica-
tions such as web service composition, distributed stream pro-
cessing, and workflow management. Quality-sensitive distributed
applications such as multimedia services and on-line data analysis
often desire the SON to provide up-to-date dynamic information - :
about different overlay nodes and overlay links. However, it is a M E : query
challenging task to provide scalable and efficient information
management for large-scale SONs, where both system condi-

System Patterns
application Query patterns;
system attribute patterns

tions and application requirements can change over time. In 0000

this paper, we present InfoEye, a model-based self-configuring o

distributed information management system that consists of a — . Periodical _ On-demand
information push —=—=" information pull

set of monitoring sensors deployed on different overlay nodes.
InfoEye can dynamically configure the operations of different
sensors based on current statistical application query patterns
and system attribute distributions. Thus, InfoEye can greatly
improve the scalability of SON by answering information queries
with minimum monitoring overhead. We have implemented overlay nodes and perform system management tasks (e.g., job

a prototype of InfoEye and evaluated its performance using scheduling, resource allocation, system trouble-shooting); (3)
both extensive simulations_ and micro-benchmark experiments monitoring sensorghat monitors and provides information of
on PlanetLab. The experimental results show that InfoEye . .
can significantly reduce the information management overhead each host t‘? ma”agef“em nodes. The information manggement
compared with existing approaches. In addition, InfoEye can System resides within the management nodes, which can
quickly reconfigure itself in response to application requirement resolve information queries from other system management
and system information pattern changes. modules or user applications.

However, providing scalable and efficient information man-
agement service fdarge-scale, dynamidlistributed systems

Federated computing infrastructures such as computatiosath as SONs is a challenging task. On one hand, quality
grids [7] and service overlay networks (SON) have beconsensitive applications running in such environments desire up-
increasingly important to many emerging applications such &sdate information about the current system in order to better
web service composition, distributed stream processing, asmctomplish their application goals. On the other hand, the
workflow management. As these computing infrastructurggstem can include a large number of geographically dispersed
continue to grow, how to efficienty manage such largerodes (e.g., the World Community Grid [2] consists of many
scale dynamic distributed systems to better support applicatibousands of nodes), and each node can be associated with
needs has become a challenging problem. Distributed inforany dynamic attributes (e.g., CPU load, memory space,
mation management service[13], [15], [10] is one of the furdisk storage, and other application level attributes). Obtaining
damental building blocks of system management, which cancurate information about all nodes with their complete
track dynamic system information and make it available viaformation would inevitably involve high system overhead.
some query interfaces. Applications running in the distributed Previous work [13], [10], [15] has investigated different
environment can then query the current status of the systanthitectures for scalable information management. In this
and make appropriate management decisions. paper, we explore a new design dimension, i.e., utilizing the

Figure 1 shows a typical federated distributed system costatistical patterns of application needs and system conditions
sisting of (1) overlay nodes that execute different applicatido intelligently configure the information management system
tasks; (2) management nodes that monitor the status of fall minimum monitoring overhead. As a simple example, if

Fig. 1. Pattern-driven distributed information management systems.

I. INTRODUCTION

most of the application queries require at least 20% availaldections are summarized in Table I.
CPU time, then it is unnecessary to monitor a node that has
only 10% CPU time, because it is unlikely to match any" System Model

queries. Although the idea is simple, the challenging question"We consider a distributed system that Hésoverlay nodes

is what statistical patterns can be utilized, ahow? to be monitored, as is shown in figurel. Each node is

This paper presents |nf0Eye, a novel pattern_driven, SeﬁSSOCiaIEd with a set of attributes (e.g., CPU load, number
configuring distributed information management system th@f disk accesses) that are denoteddy- {a1, ..., a4 }. Each
provides answer to the above questions. Briefly, InfoEye @tributea; is denoted by a name (e.g., CPU, memory) and
based on the observation that for any information managem¥atue (e.g., 10%, 20KB)
system, there are essentially two approaches to dynami®® management node is responsible for monitoring the
information collection: (1)information pushwhere overlay distributed system. It provide information to the application by
nodes periodically report their current attribute data to ttswering their information queries. Although in a real system
management nodes; and (&formation pullwhere the man- there can be multiple management nodes, in this paper we
agement nodes dynamically request information from overl&§cus on exploiting statistical application patterns and consider
nodes for query resolution. the algorithm in a single management node. To extend the idea

Each of the approach has its merits. For example, pusht@smultiple management nodes, the management nodes need
more efficient when the query arrival rate is high, becauée share statistical information among themselves. However,
the push cost is amortized among many queries; and pu"fqgther discussion of this is outside the scope of this paper.
more efficient when the query arrival rate is low, because For applications such as service composition and distributed
it only collects data that are needed. Hence, in a dynanfif€am processing, the query can often be expressed as locating
distributed system where both query patterns and systSRme overlay nodes that have certain resources, @.g.€
conditions can change over time, any static solutions (i.&,%1]) A (a2 € [l2,ha])... A -+ (ar € [lk, hi]), wherel;
statically configured push or pull operations) are insufficier@nd h; are the desired lower bound and upper bound for
To achieve scalability and efficiency, a distributed informatioft» respectively. Each query can also specify the number of
management system must be able to adaptively configure it§{grlay nodes that are needed. The query answer should return
based on current query patterns and system conditions. the specified number of overlay nodes, each of which satisfies

In order to achieve such adaptivity, we develop an analyticiie query predicate. Finally, each query can also specify a
model that precisely captures the relationship between systgi@leness constraiff; on a required attribute;, which means
cost and various system parameters. This model allows the attribute value used to resolve this query should be no more
foEye to dynamically configure the information managemeFﬂanTz‘ seconds old. The staleness constraint is meant to give
parameters in order to utilize various application and syste#RPlications more specific control on their query result. If a
patterns such as query arrival rate, attribute popularity, afery does not specify such constraint, a default value (e.g.,
system resource distribution. 30 seconds) can be used instead.

We have implemented InfoEye and conducted both simu-On each overlay node, there is a monitoring software
lation studies and micro-benchmark experiments on the Pl&@lled a monitoring sensor. The monitoring sensor can be
etLabl. Our results show that by exploiting application quer§onfigured by the management node to periodically push its
patterns and statistical system conditions, InfoEye can achiéjormation only when certain conditions are satisfied. It can
much lower management overhead than static approaches e respond to a dynamic probe with its current information.
are agnostic to these patterns. In addition, when the qu<§90h configurability allows the management node to achieve
patterns or system conditions change, InfoEye can always adlaptiveness based on statistical query patterns.
configure itself to the best operating point. B. Statistical Patterns

The rest of the paper is organized as follows. SectlonInfoEye performs automatic self-configuration based on dy-

Il gives an overview of the InfoEye system, including the mically maintained statistical information about the queries
system model and problem description. Section Il presents e Y . o q
nd system conditions. Specifically, the current InfoEye pro-

the detailed configuration algorithm for efficient informatio maintains the following statistical information:
management. Section IV presents the experimental evaluat¥8 e maintains the foflowing statistical information:.
requently queried attributes. Although overlay nodes

results. Section V discusses related research work. Finally, X . . L
cyan be associated with many attributes, it is likely only a

Section VI concludes the paper. . L
pap subset of them are frequently queried by current applications.
Il. INFOEYE OVERVIEW For example, in distributed applications where computing jobs

In this section, we present a high level overview of thare mainly CPU-bound, most queries will specify requirements

InfoEye system. The notations used in this and subsequghf:{tthe CPU resource, but not on_other attrlbute_s. '_A‘S a result,
the management node can Conflgure the monltorlng sensors
linfoEye is continuously running on PlanetLab and we have a web interfaf@ Only push the subset of attributes (denoted A3 that

http://cairo.cs.uiuc.edu/monitoring/. Toward the deadline of Infocom, some of
our collaborators have actually used it to locate desirable PlanetLab nodes fctUnless specified otherwise, we usg to represent both name and value
their experiments. of the attribute.

notation meaning notation meaning

N total number of overlay nodes a; system state attribute

A set of all attributes A” subset of attributes to be pushed
fi= 'l"}:" fraction of pushed attributes T push interval

T optimal push interval for; T; staleness constraint of a query

S1 size of push message So size of probe message

A average query arrival rate n average probing overhead

p1 % of resolvable queries using”* l; lower bound requirement fat;

7 (optimal) push threshold foa; f % nodes in the push subspace

P2 % queries in the push subspace ps % queries satisfied by the push intervals

TABLE |
NOTATIONS.

CDF can be resolved by the pushed data. However, if we increase

the push threshold from to I/, only 20% of nodes need to
10 . .))
push their attribute data with a moderate decrease of query hit
08 |/ , o ratio (from 90% to 65%).
Attribute Distribution .
, o Frequent staleness constraints.The last query pattern
/ ~-- Request Distribution - K .
' that InfoEye utilizes is called frequent staleness constraints.

g?g B 2 When an application makes a query, it can speci§fadeness
T a constraintT;, which means the attribute data used to resolve

the query should be no more thdh seconds old for attribute

Fig. 2. System cost under different configurations. a;. It is likely for any attributea; € A*, different queries

may have different staleness requirements. As a result, the
push interval (i.e., update period) @f should be dynamically

are likely to be queried. This allows the management nod§qqured, so that the push frequency is just enough to satisfy
to resolve queries that only specify attributes #T. For . ctaleness constraints of most queries.

other queries, dynamic probe (pull) can be invoked for their yoge attribute distributions. In addition to the query

resolution. .) . patterns, InfoEye also maintains an estimate of node attribute
Frequently queried range valuesBesides selecting popu- gisprinytion. The distribution can be used for two purposes.
lar attributes, we can further reduce the system cost by f'lte”ﬁﬂst, we can estimate the probing cost (i.e., the number of
out unqua}lified attr.ibute values. For example, if most queri obes that will be generated) based on the node attribute
on CPU time require a node to have at least 20% free C dibtributions. Second, the attribute distributions allow us to
time, the nodes with less than 10% CPU free time do n@ksimate the push cost reduction and pull cost increase when
need to push their CPU value since they are unlikely t9o configure the push thresholds for different attributes (in
satisfy the query predicate. Generally, we can configure t&@ (o, 11-B). Since our system involves multiple attributes,
monitoring sensor with a push triggering rafdé’, oo) for \ye maintain multi-dimensional histograms to estimate the
each selected attributg, € A*. The monitoring sensor Will 5yip e distribution, which can be obtained by executing

push the attribute data only if the attribute value falls into th'ﬁﬁfrequent aggregate queries (ekistogram) over all the
range. The lower bound of the configured range is called; jaq 9.

the push thresholdor the attribute. By properly setting the
push threshold, we can filter out a lot of unnecessary ddta Problem Formulations

push without significantly decreasing the query hit ratio (i.e., Since InfoEye combines the push and pull for data collec-
percentage of queries that can be resolved by the pushed dafgp, its management cost (or total system cost) includes two
Figure 2 illustrates the problem of push threshold selectigrts, push costand pull cost The push cost is the amount
for one attribute. The solid line is the cumulative distributiogf gata periodically delivered from different overlay nodes
function (CDF) of an attribute;; across allV nodes, and the tg the management node. The pull cost is the amount of
dashed line is the CDF of the lower bound requirements frogata generated per time unit for pulling the attribute data, in
the current queries. As the figure shows, 90% queries requiggponse to queries that cannot be resolved by the management
the attribute to be greater tharand only 74% of nodes satisfy node locally. The goal of InfoEye is to dynamically configure

this requirement. If we configure the push threshold td,bethe monitoring sensors, so that the total system cost is
74% of nodes will push their attribute data and 90% of queri@ginimized.

Corresponding to the application query patterns, there are
3The query predicates such as in resource queries often do not have up b 9 P query p

er- . : .
bound constraints. Our scheme can also be easily extended to include a fﬁi'['éee configuration parameters that InfoEye can tune. The first

upper-bound. is the subsetl* of attributes that are pushed. This means each

monitoring sensor only periodically pushes a suhdét of AttributeSelectiol’, N, 4, 51, 52,7, A)
attributes. When a query arrives, if all the attributes it specifie$ % let f1 RN 0, andA :E(Z) ion(1
is in A*, no additional cost is incurred. Otherwise, some on- 3. feﬂrgpi?%néc?fm:;n(?qi)qg%l}on()
demand probing protocol is needed to find enough nodes that 4. while ¢ 0 do

satisfy the querd 5. for eachA; € C computefreq’ (A;)

Since each monitoring sensor periodically (ev&rgeconds) 6. selectd; from C that has the largest cost reduction.
pushesf; = L5l percentage of the attributes, assume the 7. ifthe cost reduction ofl; is negative then break
message size is proportional to the number of attributes 8. h=h+T

i i i i 9. pi=pi+ freqd(4A)
pushed, and; is the size of the message if all| attributes 10. ‘computenin.cost using Equation(1)

are pushed, the push cost of the system can be expressed ag by 4+ — 4* _ 4,

%Nflsl. Suppose the average query arrival rate iand on 12. for each4; cC setAd; = A;\A;

average we need to probenodes with2n messages (probes | 13. merge duplicate subsets(n

and replies) to resolve a query by pull. gtdenote the query 14.returnA”

hit ratio, andS, denote the size of a probe messagthe pull Fig. 3. Push attribute selection algorithm.
cost of the whole system &:1(1—p;)ASs. As a result, if only

popular attributes are configured, aAd is the set of selected

attributes, the total system cost is

subspace, a total ofl — p1p2) percent queries need to be
le1S1 + 2n(1 — p1)ASs. (1) resolved by dynamic pull. As a result, the total system cost
T becomes
Larger A* |mpl|es larger push cost (i.e., highér) but onver — foaN f1.51 + 2n(1 — pap1)ASs.)
pull cost (i.e., lowerl — p;). Thus, InfoEye dynamically T
selects A* based on the dynamically maintained statisticdlower [*,1 < i < |A*| implies larger push cost (i.e., higher
information, so that the overall system cost in Equation 1 j&) but lower pull cost (i.e., lowet —psp;). Thus, the goal of
minimized. InfoEye is to select a set of proper push threshéjdfor all
Given a subsetd* that has been selected, we can furtheattributesa; € A*, such that the total system cost in Equation
reduce the system cost by selecting a push threskjofdr 2 is minimized.
each attributer; ¢ A*, and filtering out the nodes that do not To further reduce the system cost, each overlay node can
satisfy the push thresholds. The set of push thresholds definush the value ofa; € A* every T} seconds when the
a subspac (a1, as, - --,aj4+|)|a; > 17,1 <i < |A*[} in the value is above the push threshold. The push cost for attribute

- Y

|A*|-dimensional space. We say a node is “covered” by the becomesT%sz‘%‘. Thus, the total push cost for all

subspace, if its value for each attributee A* is above the selected attributes is %fQN\%l' Suppose under the
push threshold. We say a query is “covered” by the subspace, i . ai€Ar ! .
if its lower bound requirement on eaeh ¢ A* is above the aPOVe configurationp; percent of queries (among thep:

push threshold. If a query is covered by the subspace, it me&FECent of queries that specify attributesdn and are covered

all the nodes that satisfy the query (called the answer set®f e subspace defined by the push thresholds) can satisfy
the query) are covered by the subspace, thus it can be loci§ir Staleness constraints. Then a totallof p;pop:) percent
resolved safely. For a query not covered by the subspace,%éerles need to invoke pull operations. Thus, finally the total

answer set is not completely available. In this case, we assub§tem cost for all three configuration parameters is

a probe is invoked, so that the query result is not biased toward 1 S1
a subset of the answer set. Z (FfQNm
Suppose a overlay node reports its attribute détaonly

if the node is covered by the subspace, ghdpercent of Lower T;* means higher push cost but lower pull cost due to
the overlay nodes are covered by the subspace defined byhigher ps. Thus, InfoEye needs to properly configure a push
push thresholds. The push cost of the system is reducedntgrval 75" for each attributen; € A* based on the current
%szﬁSl since only thef, percentage of nodes do periodid}uefies' _staler}ess. rgqgirements, such that total system cost
push. Correspondingly, ib, percent of the queries (amongn Equation 3 is minimized. Thus, the problem addressed by

those that only specify attributes in*) are covered by the the InfoEye system is to properly configurt, I* for each
attributee A* andT™ on each sensor to minimize the above

) +2n(1 — p3pap1)ASs. 3)
a; EA* 7

4There are different ways for dynamic probing, e.g., using random sampli§gStem cost.
or on-demand spanning trees [9]. Regardless the particular probing protocol,

we assume in order to resolve a query by probing, on avetag®les need to I1l. DESIGN AND ALGORITHMS
be contacted witl2n messages. In practice,can be obtained from previous) .]]]
probes. In this section, we describe our algorithms to achieve

°Since it is unlikely for a query to specify requirements on mangntimal information monitoring based on the formula derived

attributes [3], we assume the message size for both probe and refly is . th . ti o lis t L. the total
which is a constant much smaller th&p. However, this is only for notational In the previous section. Our goal 1S 10 minimize the tota

simplicity and is not essential to our model. system cost in Equation (3). For simplicity, we describe the

algorithm in several steps as follows. In practice, the steps are PushThresholdSelectifn N, A, 51, S2, n, A, A%)

executed in an iterative fashion. L letly =0, forl <i<|A"|andfy =p; =1
2. computemin_cost according to Equation(2)
A. Push Attribute Selection 3. let B and B’ be the histogram bins for nodes and querjes

) L 4. while B # () do
The goal of push attribute selection is to select a subset af 5. selectq; that has the largest cost reduction.

attributesA* C A, so that the total system cost is minimized. | 6. if the cost reduction is< 0 then break

According to Equation (1)4* can affect the push cost (i.e., | /- increasd; tol; +d _

fi = A*/A percent of complete attribute push cost) and| 8- rémove all nodes and queries not coveredty}
. 9. subtract the cost reduction fromin_cost

the percentagep; of queries that can pe resolved by the 10.return{l;}

management node locally. Larger* implies a larger push : : :

cost but also a larger query hit ratio, while smaller implies Fig. 4. Push Threshold Selection Algorithm.

smaller push cost but also lower query hit ratio and thus higher

pull cost.

Our push attribute selection algorithm is shown in Figure 8tep the attribute:; is selected in a way that maximizes the
In the figure,C' is the collection of attribute subsets, eachet cost reduction. The above process is repeated until either
corresponding to a set of queries (e.gli = {a1,a3} every push threshold has reached its maximum, or there is no
corresponds to all queries that specify requirementpand attribute with positive cost reduction.
az). freq(A;) is called the “query frequency” fod;, which The pseudo code for the push threshold selection algorithm
means the percentage of all queries that are representedgo¥how in Figure 4. The main difference from push threshold
A;. freq'(Ai) = 32 4. ca, freq(4;) is called the “cumulative selection is how to compute cost reduction given a particular
query frequency”, which means the percentage of queries t@ahfiguration. In the algorithmB and B’ are the histogram
can be resolved by the push data if all attributesdinare bins for the node attribute and query distribution. Each bin
pushed. Given ani;, if we push all attributes iM;, we will in B or B’ is described by a tuple ofA*| + 1 fields.
increase the push cost @N%SL but we also reduce the The first |A*| fields define the bin, and the last field is the
pull cost by2n - freq’(A;)\S2, becausereq’ (A;) percentage percentage of nodes/queries in the bin. For example;
of queries can now be locally resolved. The decrease in pll;, v, - -, v4+,0.1) € B means 10% of the machines have
cost minus increase in push cost is called the “cost reductioatfributea; € [v;, v; + d),1 <1 < |A*|.

which indicates how the system cost will changeAf is)
pushed. C. Push Interval Selection

Initially, we set A* to be empty, which means no attribute Given the selected push attributd$ and push thresholds
is pushed. Thereafter, we repeatedly select the subselith {l}|a; € A*}, The goal of push interval selection is to select
the largest cost reduction, and add to A*. This is repeated push intervall’* for each attribute:; € A*, so that the total
until either all attributes have been addedAd, or the cost system cost according to Equation (3) is minimized.
reduction for any remaining attribute subset is negative. NoteThe push interval selection algorithm works much the same
when 4; is added tad*, Its attributes should be removed fromway as the previous two algorithms and thus it is only briefly
all other subsets ig’. This may create duplicate subsets’in described here. Initially the push intervgf for eacha; € A*
For example, after the attributesity = {a1, a5} are removed, is set to a minimum value (i.e., this is the smallest interval
the two remaining subsetsiy, a3} and {aq, a3} will be the that monitoring sensors can push attribute data periodically).
same as each other. These subsets are then merged, andtibecafter, at each step, an attribute is selected and the
cumulative query frequency recomputed. corresponding push interval incremented (by some constant
step size). The attribute is selected so that the increase of
its push interval results in the largest cost reduction. This is
Given the subsetd* as selected by the push attributeepeated until every push interval has reached some maximum
selection algorithm, the push threshold configuration algorithwalue, or the increase of any push interval would result in
should select a push threshald for each attributez; € A*, negative cost reduction. The cost reduction is computed as the
so that the total cost as in Equation (2) is minimized. reduced push cost due to slower push minus the increased pull
The idea behind push threshold configuration is similaost due to more queries being pulled (because their staleness
to push attribute selection. For each attributec A*, we constraint cannot be satisfied by the pushed data).
normalize the possible value range[@91.0], and divide the .
range into steps of sizd. Initially all the push thresholds D- Practical Issues
are set to 0, which means every node will push its attributesThere are several practical issues that need to be mentioned
in A*. At each step, an attribute; is selected, and its pushabout our algorithms. First, when we resolve a query by pull,
threshold increased frorij to I + d. Such an increase will the pulled data can be cached for future query resolution.
reduce the push cost since fewer overlay nodes are covermvever, this is unlikely to have a big impact on our query
by the subspace. However, it also increases the pull cost simesolution, since the data are not periodically refreshed, thus
more queries are uncovered by the subspace. Thus, at eathtimeout within a short period of time. Second, the push

B. Push Threshold Configuration

interval selection assumes each attribute is independently
pushed. This may be undesirable due to a lot of small
messages. This can be solved as follows. Suppose the set

Total cost for push threshold selection

—— k=1
—— k=3
—~— k=5
—— pure push
—=— pure pull

of push intervals have been selected, and the smallest push
interval i7", we can normalize every; to T L%J, which

(2

is the largest multiple of ;" that is still < 77;. This 'way other
attributes can be piggybacked to the push messages; for

N

>

@

IV. EXPERIMENTAL EVALUATION

5 15

6 78 9 10 12 14
query arrival rate A (number of queries per second)

In this section we present an experimental evaluation of
InfoEye system. We first describe our simulation methodology
and results, then present the prototype implementation of
InfoEye and our experiment results from the PlanetLab [11].

Fig. 6. Push threshold selection.

Total cost for push interval selection

i —— k=1 e
A. Evaluation Methodology B e
1000(| —— pure puﬁh B//

—s— pure pu s

Our simulator consists of auery generatorthat can
generate a range of different kinds of query workload, a
query collectiorthat captures the statistical query patterns, and
three configuration modules (i.e., popular attribute selection,
push threshold configuration, and push interval configuration).
Unless otherwise specified, the system siz&/is= 3000, the
default push interval i§" = 30 seconds, the total number of
attributes is|A| = 50, the number of nodes to be probed for
each pull isn = 50, the push packet size i$; = 1000 bytes
and the probe packet size §& = 100 bytes. Our parameters
are chosen to represent a “typical” system. For example,

in the CoMon [1] monitoring service currently running oruf the system for resolving the validation queries is computed.
the PlanetLab, each resource report contains more than ggh experiment is repeated 200 times, and the average cost
attributes, and has about 900 byfes is reported.

Our query generator uses similar methods as previousye mainly compare the system cost of InfoEye to that of the
work [10] for query generation. For each query, we firs{yo static approaches, pure push and pure pull. In pure push-
decide the number of attributes in a query, which is uniformiyased systems, each monitoring sensor periodically reports all
distributed betweeril, k],1 < k < |A[. Next, the specified attribute data using the default push interval. Thus, the system
number of attributes are selected frorh The probability cost is independent of the query arrivals. In pure pull-based
that an attribute is selected follows the Zipf [4] distributiongystems, no periodic information push is involved. thus the
After that, the lower bound on each attribute is generategl,stem cost is proportional to the rate of query arrivals.

We assume that the value range of each attribute is divided
into 50 equal sized bins (intervals). The lower bound for @@, Simulation Results
attribute is generated according to a Zipf distribution, but _.

biased toward the highest value. To generate node attribu é: Ig_tlr:e SFS.hOWS5the pr?rfornlﬁnce Otf our at'inbfu':efszlect;on
values, we use a probability distribution that mimics the actu gorithm. Figure 5(a) shows the system cost of InioEye for

attribute distribution we observed on the PlanetLab, name ’fferent query ar.r|val rate and maximum number of attr_lbutes
in a query. Figure 5(b) shows the number of attributes

most nodes have moderate attribute values, but a small num ﬁ .
of nodes will have very large or very small attribute values S€ ected for push. The results show that InfoEye consistently

We use the total system cost defined in Section II-C as rforms better than both pure push and pull approaches.

. - ; - . en the query arrival rate is small, pure push involves a lot
main evaluation metric. For each experiment, we first gener query P P

a set of “training queries” (usually 2000 of them) using th% unnecessary overhead. At this time, InfoEye can configure

. : the monitoring sensors to push only a small number of most
uery generator. The query arrival follows a Poisson process. . . 4 .
query g query P opular attributes (as shown in Figure 5(b)), and achieve

with a mean arrival rate\. We then run our algorithms toP -
small system cost similar to pure pull. When the query

configure the InfoEye system (i.e., to select push attributéb > i . .
9 ye sy (P ﬁép/al rate increases, the cost of pure pull increases linearly.

5 15

6 7 8 9 10 11 12 13 14
query arrival rate A (number of queries/second)

Fig. 7. Push interval selection.

push thresholds, and push intervals). Next, we generate ano T ever. InfoEve can confiqure the monitoring Sensors to
set of “validation queries” according to the same model, a ' y 9 g

resolve the queries against our system configuration. The cB%h more attr.|butes. As a result, its system cost is always
smaller than either pure push or pure pull. If the system is

6CoMon is essentially a push based system. In order to minimize tﬁgauca”y conflgured,_ the system cost would be _many times
monitoring overhead, the push interval is set to 5 minutes. that of InfoEye for either small or large query arrival rates.

Total cost for push attribute selection Number of attributes selected for push

—— k=1

sh
2 g
5 3

—— k=1 / = e
110011 —— k=3 /// N 2 k:3 ~
—~— k=5 o 2 |l k=5
1000f1 —— pure push /// 40
e
—=— pure pull / 35

<
g
8

AN

W
<]

~

3

8
N
il

2
8
S
N
S

&

total system cost (Kbps)
oy
g
S

number of attributes selected for
5

o o
T

5 15

o

14 15

6 7 8 9 10 11 12 13 14 6 7 8 9 10 11 12 13
query arrival rate A (number of queries/second) query arrival rate A (number of queries/second)

(a) Cost of multi-attribute queries. (b) Number of attributes selected.

Fig. 5. Attribute Selection Results

InfoEye adaptivity to query arrival rate changes InfoEye adaptivity to query popularity changes
1

\
‘{ 5 —— push cost of InfoEye
W —— total cost of InfoEye
fl +
T
: I ‘ 1 i + l
10001t AR ﬂ ‘r”t 1
Mo TN A [AT I I
A #.r WU NS LAY LA i
AR YV T M

Y ! M

Tl

800 1000 1200 0 200

5
3
s

i
It
[

2
8
8

—— push cost of InfoEye
—+— total cost of InfoEye
—— pure push

—=— pure pull

2
8
8

a
g
8

2
8
8

cost for every 10 second period (KB)
N
8

cost for every 10 second period (KB)

0 200 400 0 1000 1200

j 600 400 600 80
time (seconds) time (seconds)

Fig. 8. Adaptivity to query rate. Fig. 9. Adaptivity to popularity.

Figure 6 shows system cost when both attribute selectiadaptivity of InfoEye when the query arrival rate changes.
and push threshold selection are applied. The node attribgsr this experiment, initially the mean query arrival rate
data are generated using the distribution described in S@c-four queries/second. After the initial configuration, we
tion IV-A, and the “moderate value? is 5. We can see that generate validation queries and record the total system cost
when the query arrival rat is small, the cost of InfoEye is every 10 seconds. An exponential weighted moving average
similar to Figure 5(a). This is because whgris small,|A*| of this “instant cost” is then compared with the system cost
is small. As a result, the system cost is dominated by pullipgedicted by Equation (1). If the difference between the two
attributes that are not irl*. However, whem\ is large, more costs exceeds 20%, a re-configuration is initiated. For this
attributes are pushed, and the effect of push threshold selecésperiment, we also use a “historical query window” of the
becomes more significant. Figure 7 shows the system cestent 2000 queries. System re-configuration is based on these
when all three algorithms are applied. The push interval faistorical queries. At time 400, we change the query arrival
pure push ig” = 30 seconds. The query staleness requiremefibm 8 to 12. Figure 8 shows that the higher query arrival rate
follows a distribution similar to that used for node attributeesults in higher system cost. At time 470, InfoEye detects the
distribution. The minimum requirement is 30 seconds, thg/stem change and re-configures itself to push more attributes.
maximum requirement is 180 seconds, and the moderate vallghough push cost is increased, the total system cost is
is 50 seconds. Figure 7 shows that by pushing the attributeseéduced since less queries need to be resolved by pull. Figure 8
a frequency that satisfies most (but not all) query requiremeatso shows the cost of pure push and pull. We can see when
we can further reduce the system cost so that even when the query arrival rate is 4, the cost of InfoEye is close to that
query arrival rate is large, the total cost of InfoEye is abowff pure pull. Both are much smaller than pure push. After
25% smaller than pure push the reconfiguration, the cost of InfoEye is close to that of

We now examine the adaptivity of InfoEye, i.e., its abilitypure push, and both are much smaller than that of pure pull.
to re-configure itself in response to dynamic query pattefigure 9 shows the adaptivity of InfoEye to attribute popularity
changes. We only show the results of push attribute recathanges in the queries. The experiment settings are similar to
figuration due to the space limitation. Figure 8 shows thfe previous one, except the mean query arrival rate is 10 for

the whole experiment. At time 400, we switch the popularity

’Figure 7 shows that wheh is large, the cost fok = 5 is can actually of the top three and bottom three attributes. We observe that
be smaller thark = 3. This is because fok = 5, more attributes are pushed

as indicated in Figure 5. As a result, push interval selection has more spQELOEye can qu_iCkl_y detect thi_s change a_md reconflgu_re itself.
for improving the push cost. Because at this time, the history queries are a mixture of

Configured push threshold for available CPU time
20

AN

two different patterns, only a smaller number of attributes are
selected. After another 120 seconds or so, most queries in the
history window are from the new distribution. As a result,
InfoEye reconfigures again and selects the right subset*of

for push.

e (percentage)
5 %

=

~

C. Prototype Results

We have implemented a prototype of our InfoEye system
and deployed it on the PlanetLab [11] testbed. We have . o . .
a monitoring sensor on each PlanetLab node, which can experiment (me (minutes)
periodically check the local resource attributes and push the
data to the management node. The management node is
responsible for storing the pushed attribute data and answering
gueries. It is also responsible for running the configuration Percentage of covered nodes and queries
algorithms and configure the monitoring sensors based on the) J\/
computed system parameters such as the push threshold for ” ¢
each attribute. Currently we have only integrated the push
threshold selection algorithm with our management node. In
addition to the monitoring sensors and the management node,

threshold for CPU tim

S

push
1

o

Fig. 10. Push threshold for CPU.

percentage
)
3

we have a query client. This query client again generates % e o eovart o 2 |

synthetic queries and send the queries to the management “

node. The management node and query client are run on a 0

local machine. 205 : i s % 2
Our experiments involve about 280 PlanetLab nodes. Each expermentime (minutes)

monitoring sensor samples the local resource values every Fig. 11. Covered nodes and queries.

10 seconds, and compares them with the configured push
thresholds. If the resource values are greater, the attribute data
are pushed to the management node. The management node
accepts the pushed data and answers queries. It also invdkégshold configured by the management node every minute.
the push threshold selection algorithm every 60 secdndslnitially the push threshold for CPU time is configured to
The new push thresholds are then sent to all monitorif§ @ little less than 10%. After the pattern change, the push
sensors. The query client can generate queries of differéffeshold is configured to be a little less than 20%. The push
patterns and send the queries to the management node. Ethtgshold for free memory and disk space show similar trend
query specifies requirements on three attributes: available CRud are therefore omitted. From Figure 11 we can see the effect
time, amount of free memory, and amount of free disk spad¥.such system configuration. Initially, since the push threshold
The management node keeps a sliding window of past 108dow, about 80% of the nodes need to periodically push their
queries for the push threshold configuration. Each time befdtiributes. When the query pattern has changed and the queries
the configuration, the management node also runs a globgluire more resources, less nodes can satisfy the queries.
aggregation query to get the node attribute distribution for teur push threshold selection algorithm correctly recognizes
whole system. Under the above settings (e.g., 280 nodes &g, and configures the push thresholds to higher values. This
1000 historical queries), each configuration run takes abd@gsults in only about 30% of the nodes periodically push
3ms, and the memory consumption of the management ndbeir attribute data. Although this means a small proportion
is under 5MB. of queries { — p2) have to be resolved by pull, the overall
For the first experiment, we first let the query clienystem cost is reduced, due to large savings in the push cost.

generate queries that require small amount of CPU time, freerigure 12 and Figure 13 show the same results for a different
memory and disk space. Specifically, the lower bound fgj,ery pattern change. For this experiment, during the first 15
these attributes are randomly distributed within [10%, 20%hinutes, the queries are generated just like the first experiment.
[10MB, 20MB] and [10GB, 20GB], respectively. After aboutThereafter, the query distribution is not changed, but the mean
12 minutes, the query pattern is changed. The queries ngWery arrival rate is changed to 2. Figure 12 shows when the
require a minimum of CPU, free memory and disk space thgtiery arrival rate decreases, the configured push threshold for
are randomly distributed within [20%, 30%)], [20MB, 30MB]CPU is increased. The reason is that a smaller query arrival
and [20GB, 30GB], respectively. The query arrival rate is fhte means a smaller overhead for query pull. As a result, the
per second for the entire experiment. Figure 10 shows the puglitem cost can be reduced by slightly increasing the push

s I . , . threshold, which leads to smaller percentage of nodes that
System reconfiguration can be triggered by either a timer or any changes in

system parameters. Our current prototype only implements the timer-trigge%ric’dica”y p_USh their data, a”q a small percen_tagg of queries
reconfiguration. that need to invoke pull operations (as shown in Figure 13).

Copfigured push threshold for avallable CPU time explored by some previous work in different contexts such as

delivering dynamic web objects to clients [6] and collecting
data in a sensor network [12]. Although the general idea of
combining push and pull is not new, we should emphasize
applying the idea to a specific environment requires non-trivial
system analysis and design. In our case, it means identifying
application query patterns and deriving the analytical model
for total system cost, which makes it possible for adaptive
® push/pull configuration.

Wills et. al. [14] have considered the problem of adaptive
resource information management. However, they assume an
environment where multicast is used to disseminate informa-
tion requests or updates, and the goal is to decide whether
requests or updates should be multicast, based on the local
observation of each node in the system. Thus it is also different
from our system.

S
@

-
)

©
o

©

g

Fig. 12. Push threshold for CPU.

push threshold for CPU time (percgntage)

©

0 10 15 20 25 30
experiment time (minutes)

Percentage of covered nodes and queries

95

90

VI. CONCLUSION

We have presented the design and evaluation of InfoEye,
a novel model based, self-adaptive distributed information
management system. The goal of InfoEye is to resolve multi-
attribute queries in large-scale dynamic distributed systems
with minimum monitoring overhead. To achieve this goal,
InfoEye maintains statistical information about both applica-
tion queries and node attribute distributions, and dynamically
configure itself to achieve minimum management overhead.

V. RELATED WORK Through extensive simulation studies, we show that InfoEye

Distributed information management is critical for angan achieve much lower management overhead than static
large-scale system management infrastructure. For exampflutions. More importantly, when the query pattern changes,
both the CoMon PlanetLab monitoring service [1] and thkfoEye can quickly re-configure itself to adapt to the changes.
Grid Monitoring/Discovery Service (MDS [5]) have provenWe have also implemented a prototype of the InfoEye system
extremely useful for their user communities. However, fadnd validated the feasibility and performance on a real network
practical purposes, both systems are statically configur@fivironment. A web based query interface is also provided at
Every node pushes all attribute data to a central server at fixa#p:/cairo.cs.uiuc.edu/monitoring/.
intervals, even when the attribute data are unlikely to satisfyOur current InfoEye system can be seen as a first step to
application queries. demonstrate the feasibility of adaptive information manage-

Astrolabe [13] and SDIMS [15] are two representativéhent. As ongoing work, we are considering applying the same
scalable distributed information management systems. Ba@i¢a to overlay link monitoring, which is important for many
rely on hierarchical aggregation as a fundamental abstractigigtributed networked applications.

Astrolabe maintains one aggregation tree and uses gossip
protocols for data reconciliation. SDIMS is built on top of
a distributed hashtable (DHT) and utilizes DHT routing tolt] CoMon. http://comon.cs.princeton.edul. o
build multiple aggregation trees. Data aggregation allows the 2 ‘,QV°L';’ (B:ﬁ?r?muggy ﬁ”i‘hnp:/l\fmw'sv ‘g"‘;"mhm””"{ﬁ’”d'”g. s -

. R , M. Agrawal, and S. Seshan. Mercury: Supporting
systems to achieve very good scalability. However, it also scalable multi-attribute range queries SIGCOMM 2004August 2004.
means the primary focus of these systems is aggregatidfl L- Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching

. and Zipf-like Distributions: Evidence and Implications.|EEE Infocom

queries such as MIN, MAX, and SUM. In contrast, InfoEye 1999 1999,
considers multi-attribute range queries that must be resolvgsl K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
using detailed information about individual nodes. Several information services for distributed resource sharingThe 10th IEEE
systems such as Mercury [3], SWORD [10] and PIER [8]
can support multi-attribute range queries. However, their fofe]

percentage

—— percentage of covered nodes (f2)

—— percentage of covered queries (p2)

0 5 10 15 20 25 30 35

experiment time (minutes)

40

Fig. 13. Covered nodes and queries.

REFERENCES

Symposium on High Performance Distributed Computing (HPDC10)
2001.
P.olgeolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy.
cus is on how to resolve queries in different decentralized
architectures. InfoEye is complementary to these systems [
that it looks at a new design dimension. The idea of utilizing
statistical query patterns can potentially be applied to differe%
architectures.
Combining push and pull based information access has been

Adaptive push-pull: Disseminating dynamic web dataWivW10 May
2001.

ﬂ |. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid:

Enabling scalable virtual organizationsiternational J. Supercomputer
Applications 2001.

] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and

I. Stoica. Querying the internet with PIER. Proceedings of 29th
VLDB Conference2003.

(9]

[20]

[11]

[12]

[13]

[14]
[15]

J. Liang, S. Y. Ko, |. Gupta, and K. Nahrstedt. Mon: On-demand overlays
for distributed system management.Sacond Workshop On Real, Large
Distributed Systems (WORLDS’'Q%)ecember 2005.

D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and
implementation tradeoffs for wide-area resource discoverdRBC-14

July 2005.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the internet. 1st Workshop

on Hot Topics in Networks (HotNets-Frinceton, New Jersey, October
2002.

N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Hybrid
push-pull query processing for sensor networksWorkshop on Sensor
Networks at Informatik2004.

R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and
scalabel technology for distributed system monitoring, management, and
data mining. ACM Transactions on Computer Systerd$(2):164—-206,
May 2003.

C. E. Wills and S. Chandra. Adaptive resource management, 1995.

P. Yalagandula and M. Dahlin. A Scalable Distributed Information
Management SystenProc. of SIGCOMM 2004Aug. 2004.

