
Self-Configuring Information Management for
Large-Scale Service Overlays

Jin Liang∗ , Xiaohui Gu† and Klara Nahrstedt∗
∗Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL 61801
{jinliang, klara}@cs.uiuc.edu

†Department of Distributed Computing
IBM T.J. Watson Research Center, Hawthorne, NY 10532

xiaohui@us.ibm.com

To appear in Proc. of IEEE INFOCOM, Alaska, May, 2007(preprint)

Abstract— Service overlay networks (SON) provide important
infrastructure support for many emerging distributed applica-
tions such as web service composition, distributed stream pro-
cessing, and workflow management. Quality-sensitive distributed
applications such as multimedia services and on-line data analysis
often desire the SON to provide up-to-date dynamic information
about different overlay nodes and overlay links. However, it is a
challenging task to provide scalable and efficient information
management for large-scale SONs, where both system condi-
tions and application requirements can change over time. In
this paper, we present InfoEye, a model-based self-configuring
distributed information management system that consists of a
set of monitoring sensors deployed on different overlay nodes.
InfoEye can dynamically configure the operations of different
sensors based on current statistical application query patterns
and system attribute distributions. Thus, InfoEye can greatly
improve the scalability of SON by answering information queries
with minimum monitoring overhead. We have implemented
a prototype of InfoEye and evaluated its performance using
both extensive simulations and micro-benchmark experiments
on PlanetLab. The experimental results show that InfoEye
can significantly reduce the information management overhead
compared with existing approaches. In addition, InfoEye can
quickly reconfigure itself in response to application requirement
and system information pattern changes.

I. I NTRODUCTION

Federated computing infrastructures such as computational
grids [7] and service overlay networks (SON) have become
increasingly important to many emerging applications such as
web service composition, distributed stream processing, and
workflow management. As these computing infrastructures
continue to grow, how to efficiently manage such large-
scale dynamic distributed systems to better support application
needs has become a challenging problem. Distributed infor-
mation management service[13], [15], [10] is one of the fun-
damental building blocks of system management, which can
track dynamic system information and make it available via
some query interfaces. Applications running in the distributed
environment can then query the current status of the system
and make appropriate management decisions.

Figure 1 shows a typical federated distributed system con-
sisting of (1) overlay nodes that execute different application
tasks; (2) management nodes that monitor the status of all

M

M

M

M

M

M

M

M

M

System Patterns

application Query patterns;

system attribute patterns

overlay

nodes

M

management

nodes

S

S

S

S

S

S

S

S

S

S

S

S

S
query

clients

Monitoring

sensors

Periodical

information push

On-demand

information pull

query

answer

Fig. 1. Pattern-driven distributed information management systems.

overlay nodes and perform system management tasks (e.g., job
scheduling, resource allocation, system trouble-shooting); (3)
monitoring sensorsthat monitors and provides information of
each host to management nodes. The information management
system resides within the management nodes, which can
resolve information queries from other system management
modules or user applications.

However, providing scalable and efficient information man-
agement service forlarge-scale, dynamicdistributed systems
such as SONs is a challenging task. On one hand, quality
sensitive applications running in such environments desire up-
to-date information about the current system in order to better
accomplish their application goals. On the other hand, the
system can include a large number of geographically dispersed
nodes (e.g., the World Community Grid [2] consists of many
thousands of nodes), and each node can be associated with
many dynamic attributes (e.g., CPU load, memory space,
disk storage, and other application level attributes). Obtaining
accurate information about all nodes with their complete
information would inevitably involve high system overhead.

Previous work [13], [10], [15] has investigated different
architectures for scalable information management. In this
paper, we explore a new design dimension, i.e., utilizing the
statistical patterns of application needs and system conditions
to intelligently configure the information management system
for minimum monitoring overhead. As a simple example, if

most of the application queries require at least 20% available
CPU time, then it is unnecessary to monitor a node that has
only 10% CPU time, because it is unlikely to match any
queries. Although the idea is simple, the challenging question
is what statistical patterns can be utilized, andhow?

This paper presents InfoEye, a novel pattern-driven, self-
configuring distributed information management system that
provides answer to the above questions. Briefly, InfoEye is
based on the observation that for any information management
system, there are essentially two approaches to dynamic
information collection: (1)information pushwhere overlay
nodes periodically report their current attribute data to the
management nodes; and (2)information pullwhere the man-
agement nodes dynamically request information from overlay
nodes for query resolution.

Each of the approach has its merits. For example, push is
more efficient when the query arrival rate is high, because
the push cost is amortized among many queries; and pull is
more efficient when the query arrival rate is low, because
it only collects data that are needed. Hence, in a dynamic
distributed system where both query patterns and system
conditions can change over time, any static solutions (i.e.,
statically configured push or pull operations) are insufficient.
To achieve scalability and efficiency, a distributed information
management system must be able to adaptively configure itself
based on current query patterns and system conditions.

In order to achieve such adaptivity, we develop an analytical
model that precisely captures the relationship between system
cost and various system parameters. This model allows In-
foEye to dynamically configure the information management
parameters in order to utilize various application and system
patterns such as query arrival rate, attribute popularity, and
system resource distribution.

We have implemented InfoEye and conducted both simu-
lation studies and micro-benchmark experiments on the Plan-
etLab1. Our results show that by exploiting application query
patterns and statistical system conditions, InfoEye can achieve
much lower management overhead than static approaches that
are agnostic to these patterns. In addition, when the query
patterns or system conditions change, InfoEye can always re-
configure itself to the best operating point.

The rest of the paper is organized as follows. Section
II gives an overview of the InfoEye system, including the
system model and problem description. Section III presents the
the detailed configuration algorithm for efficient information
management. Section IV presents the experimental evaluation
results. Section V discusses related research work. Finally,
Section VI concludes the paper.

II. I NFOEYE OVERVIEW

In this section, we present a high level overview of the
InfoEye system. The notations used in this and subsequent

1InfoEye is continuously running on PlanetLab and we have a web interface
http://cairo.cs.uiuc.edu/monitoring/. Toward the deadline of Infocom, some of
our collaborators have actually used it to locate desirable PlanetLab nodes for
their experiments.

sections are summarized in Table I.

A. System Model

We consider a distributed system that hasN overlay nodes
to be monitored, as is shown in figure1. Each node is
associated with a set of attributes (e.g., CPU load, number
of disk accesses) that are denoted byA = {a1, ..., a|A|}. Each
attributeai is denoted by a name (e.g., CPU, memory) and
value (e.g., 10%, 20KB)2.

A management node is responsible for monitoring the
distributed system. It provide information to the application by
answering their information queries. Although in a real system
there can be multiple management nodes, in this paper we
focus on exploiting statistical application patterns and consider
the algorithm in a single management node. To extend the idea
to multiple management nodes, the management nodes need
to share statistical information among themselves. However,
further discussion of this is outside the scope of this paper.

For applications such as service composition and distributed
stream processing, the query can often be expressed as locating
some overlay nodes that have certain resources, e.g.,(a1 ∈
[l1, h1]) ∧ (a2 ∈ [l2, h2])... ∧ · · · (ak ∈ [lk, hk]), where li
and hi are the desired lower bound and upper bound for
ai, respectively. Each query can also specify the number of
overlay nodes that are needed. The query answer should return
the specified number of overlay nodes, each of which satisfies
the query predicate. Finally, each query can also specify a
staleness constraintTi on a required attributeai, which means
the attribute value used to resolve this query should be no more
thanTi seconds old. The staleness constraint is meant to give
applications more specific control on their query result. If a
query does not specify such constraint, a default value (e.g.,
30 seconds) can be used instead.

On each overlay node, there is a monitoring software
called a monitoring sensor. The monitoring sensor can be
configured by the management node to periodically push its
information only when certain conditions are satisfied. It can
also respond to a dynamic probe with its current information.
Such configurability allows the management node to achieve
adaptiveness based on statistical query patterns.

B. Statistical Patterns

InfoEye performs automatic self-configuration based on dy-
namically maintained statistical information about the queries
and system conditions. Specifically, the current InfoEye pro-
totype maintains the following statistical information:

Frequently queried attributes. Although overlay nodes
can be associated with many attributes, it is likely only a
subset of them are frequently queried by current applications.
For example, in distributed applications where computing jobs
are mainly CPU-bound, most queries will specify requirements
on the CPU resource, but not on other attributes. As a result,
the management node can configure the monitoring sensors
to only push the subset of attributes (denoted asA∗) that

2Unless specified otherwise, we useai to represent both name and value
of the attribute.

notation meaning notation meaning
N total number of overlay nodes ai system state attribute
A set of all attributes A∗ subset of attributes to be pushed

f1 = |A∗|
|A| fraction of pushed attributes T push interval

T ∗i optimal push interval forai Ti staleness constraint of a query
S1 size of push message S2 size of probe message
λ average query arrival rate n average probing overhead
p1 % of resolvable queries usingA∗ li lower bound requirement forai

l∗i (optimal) push threshold forai f2 % nodes in the push subspace
p2 % queries in the push subspace p3 % queries satisfied by the push intervals

TABLE I

NOTATIONS.

1l’l

0.35

0.8

1.0

0.26
0.1

CDF

Attribute Distribution

Request Distribution

a

Fig. 2. System cost under different configurations.

are likely to be queried. This allows the management node
to resolve queries that only specify attributes inA∗. For
other queries, dynamic probe (pull) can be invoked for their
resolution.

Frequently queried range values.Besides selecting popu-
lar attributes, we can further reduce the system cost by filtering
out unqualified attribute values. For example, if most queries
on CPU time require a node to have at least 20% free CPU
time, the nodes with less than 10% CPU free time do not
need to push their CPU value since they are unlikely to
satisfy the query predicate. Generally, we can configure the
monitoring sensor with a push triggering range3 [l∗i ,∞) for
each selected attributeai ∈ A∗. The monitoring sensor will
push the attribute data only if the attribute value falls into this
range. The lower boundl∗i of the configured range is called
the push thresholdfor the attribute. By properly setting the
push threshold, we can filter out a lot of unnecessary data
push without significantly decreasing the query hit ratio (i.e.,
percentage of queries that can be resolved by the pushed data).

Figure 2 illustrates the problem of push threshold selection
for one attribute. The solid line is the cumulative distribution
function (CDF) of an attributea1 across allN nodes, and the
dashed line is the CDF of the lower bound requirements from
the current queries. As the figure shows, 90% queries require
the attribute to be greater thanl, and only 74% of nodes satisfy
this requirement. If we configure the push threshold to bel,
74% of nodes will push their attribute data and 90% of queries

3The query predicates such as in resource queries often do not have upper-
bound constraints. Our scheme can also be easily extended to include a finite
upper-bound.

can be resolved by the pushed data. However, if we increase
the push threshold froml to l′, only 20% of nodes need to
push their attribute data with a moderate decrease of query hit
ratio (from 90% to 65%).

Frequent staleness constraints.The last query pattern
that InfoEye utilizes is called frequent staleness constraints.
When an application makes a query, it can specify astaleness
constraintTi, which means the attribute data used to resolve
the query should be no more thanTi seconds old for attribute
ai. It is likely for any attributeai ∈ A∗, different queries
may have different staleness requirements. As a result, the
push interval (i.e., update period) ofai should be dynamically
configured, so that the push frequency is just enough to satisfy
the staleness constraints of most queries.

Node attribute distributions. In addition to the query
patterns, InfoEye also maintains an estimate of node attribute
distribution. The distribution can be used for two purposes.
First, we can estimate the probing cost (i.e., the number of
probes that will be generated) based on the node attribute
distributions. Second, the attribute distributions allow us to
estimate the push cost reduction and pull cost increase when
we configure the push thresholds for different attributes (in
Section III-B). Since our system involves multiple attributes,
we maintain multi-dimensional histograms to estimate the
attribute distribution, which can be obtained by executing
infrequent aggregate queries (e.g.,histogram) over all the
nodes [9].

C. Problem Formulations

Since InfoEye combines the push and pull for data collec-
tion, its management cost (or total system cost) includes two
parts,push costand pull cost. The push cost is the amount
of data periodically delivered from different overlay nodes
to the management node. The pull cost is the amount of
data generated per time unit for pulling the attribute data, in
response to queries that cannot be resolved by the management
node locally. The goal of InfoEye is to dynamically configure
the monitoring sensors, so that the total system cost is
minimized.

Corresponding to the application query patterns, there are
three configuration parameters that InfoEye can tune. The first
is the subsetA∗ of attributes that are pushed. This means each

monitoring sensor only periodically pushes a subsetA∗ of
attributes. When a query arrives, if all the attributes it specifies
is in A∗, no additional cost is incurred. Otherwise, some on-
demand probing protocol is needed to find enough nodes that
satisfy the query4.

Since each monitoring sensor periodically (everyT seconds)
pushesf1 = |A∗|

|A| percentage of the attributes, assume the
message size is proportional to the number of attributes
pushed, andS1 is the size of the message if all|A| attributes
are pushed, the push cost of the system can be expressed as by
1
T Nf1S1. Suppose the average query arrival rate isλ and on
average we need to proben nodes with2n messages (probes
and replies) to resolve a query by pull. Letp1 denote the query
hit ratio, andS2 denote the size of a probe message5, the pull
cost of the whole system is2n(1−p1)λS2. As a result, if only
popular attributes are configured, andA∗ is the set of selected
attributes, the total system cost is

1
T

Nf1S1 + 2n(1− p1)λS2. (1)

LargerA∗ implies larger push cost (i.e., higherf1) but lower
pull cost (i.e., lower1 − p1). Thus, InfoEye dynamically
selectsA∗ based on the dynamically maintained statistical
information, so that the overall system cost in Equation 1 is
minimized.

Given a subsetA∗ that has been selected, we can further
reduce the system cost by selecting a push thresholdl∗i for
each attributeai ∈ A∗, and filtering out the nodes that do not
satisfy the push thresholds. The set of push thresholds define
a subspace{(a1, a2, · · · , a|A∗|)|ai ≥ l∗i , 1 ≤ i ≤ |A∗|} in the
|A∗|-dimensional space. We say a node is “covered” by the
subspace, if its value for each attributeai ∈ A∗ is above the
push threshold. We say a query is “covered” by the subspace,
if its lower bound requirement on eachai ∈ A∗ is above the
push threshold. If a query is covered by the subspace, it means
all the nodes that satisfy the query (called the answer set of
the query) are covered by the subspace, thus it can be locally
resolved safely. For a query not covered by the subspace, its
answer set is not completely available. In this case, we assume
a probe is invoked, so that the query result is not biased toward
a subset of the answer set.

Suppose a overlay node reports its attribute dataA∗ only
if the node is covered by the subspace, andf2 percent of
the overlay nodes are covered by the subspace defined by the
push thresholds. The push cost of the system is reduced to
1
T f2Nf1S1 since only thef2 percentage of nodes do periodic
push. Correspondingly, ifp2 percent of the queries (among
those that only specify attributes inA∗) are covered by the

4There are different ways for dynamic probing, e.g., using random sampling
or on-demand spanning trees [9]. Regardless the particular probing protocol,
we assume in order to resolve a query by probing, on averagen nodes need to
be contacted with2n messages. In practice,n can be obtained from previous
probes.

5Since it is unlikely for a query to specify requirements on many
attributes [3], we assume the message size for both probe and reply isS2,
which is a constant much smaller thanS1. However, this is only for notational
simplicity and is not essential to our model.

AttributeSelection(T, N, A, S1, S2, n, λ)
1. let f1 = p1 = 0, andA∗ = ∅
2. computemin cost using Equation(1)
3. let C = {Ai ⊆ A|freq(Ai) > 0}
4. while C 6= ∅ do
5. for eachAi ∈ C computefreq′(Ai)
6. selectAi from C that has the largest cost reduction.
7. if the cost reduction ofAi is negative then break
8. f1 = f1 + |Ai|

|A|
9. p1 = p1 + freq′(Ai)
10. computemin cost using Equation(1)
11. A∗ = A∗ ∪Ai

12. for eachAj ∈ C setAj = Aj\Ai

13. merge duplicate subsets inC
14.returnA∗

Fig. 3. Push attribute selection algorithm.

subspace, a total of(1 − p1p2) percent queries need to be
resolved by dynamic pull. As a result, the total system cost
becomes

1
T

f2Nf1S1 + 2n(1− p2p1)λS2. (2)

Lower l∗i , 1 ≤ i ≤ |A∗| implies larger push cost (i.e., higher
f2) but lower pull cost (i.e., lower1−p2p1). Thus, the goal of
InfoEye is to select a set of proper push thresholdsl∗i for all
attributesai ∈ A∗, such that the total system cost in Equation
2 is minimized.

To further reduce the system cost, each overlay node can
push the value ofai ∈ A∗ every T ∗i seconds when the
value is above the push threshold. The push cost for attribute
ai becomes 1

T∗i
f2N

S1
|A| . Thus, the total push cost for all

selected attributes is
∑

ai∈A∗

1
T∗i

f2N
S1
|A| . Suppose under the

above configuration,p3 percent of queries (among thep2p1

percent of queries that specify attributes inA∗ and are covered
by the subspace defined by the push thresholds) can satisfy
their staleness constraints. Then a total of(1−p3p2p1) percent
queries need to invoke pull operations. Thus, finally the total
system cost for all three configuration parameters is

∑

ai∈A∗
(

1
T ∗i

f2N
S1

|A|) + 2n(1− p3p2p1)λS2. (3)

LowerT ∗i means higher push cost but lower pull cost due to
higher p3. Thus, InfoEye needs to properly configure a push
interval T ∗i for each attributeai ∈ A∗ based on the current
queries’ staleness requirements, such that total system cost
in Equation 3 is minimized. Thus, the problem addressed by
the InfoEye system is to properly configureA∗, l∗ for each
attribute∈ A∗ andT ∗ on each sensor to minimize the above
system cost.

III. D ESIGN AND ALGORITHMS

In this section, we describe our algorithms to achieve
optimal information monitoring based on the formula derived
in the previous section. Our goal is to minimize the total
system cost in Equation (3). For simplicity, we describe the

algorithm in several steps as follows. In practice, the steps are
executed in an iterative fashion.

A. Push Attribute Selection

The goal of push attribute selection is to select a subset of
attributesA∗ ⊆ A, so that the total system cost is minimized.
According to Equation (1),A∗ can affect the push cost (i.e.,
f1 = A∗/A percent of complete attribute push cost) and
the percentagep1 of queries that can be resolved by the
management node locally. LargerA∗ implies a larger push
cost but also a larger query hit ratio, while smallerA∗ implies
smaller push cost but also lower query hit ratio and thus higher
pull cost.

Our push attribute selection algorithm is shown in Figure 3.
In the figure,C is the collection of attribute subsets, each
corresponding to a set of queries (e.g.,A1 = {a1, a3}
corresponds to all queries that specify requirement ona1 and
a3). freq(Ai) is called the “query frequency” forAi, which
means the percentage of all queries that are represented by
Ai. freq′(Ai) =

∑
Aj⊆Ai

freq(Aj) is called the “cumulative
query frequency”, which means the percentage of queries that
can be resolved by the push data if all attributes inAi are
pushed. Given anAi, if we push all attributes inAi, we will
increase the push cost by1T N |Ai|

|A| S1, but we also reduce the
pull cost by2n ·freq′(Ai)λS2, becausefreq′(Ai) percentage
of queries can now be locally resolved. The decrease in pull
cost minus increase in push cost is called the “cost reduction”,
which indicates how the system cost will change ifAi is
pushed.

Initially, we setA∗ to be empty, which means no attribute
is pushed. Thereafter, we repeatedly select the subsetAi with
the largest cost reduction, and addAi to A∗. This is repeated
until either all attributes have been added toA∗, or the cost
reduction for any remaining attribute subset is negative. Note
whenAi is added toA∗, Its attributes should be removed from
all other subsets inC. This may create duplicate subsets inC.
For example, after the attributes inAi = {a1, a2} are removed,
the two remaining subsets{a1, a3} and {a2, a3} will be the
same as each other. These subsets are then merged, and the
cumulative query frequency recomputed.

B. Push Threshold Configuration

Given the subsetA∗ as selected by the push attribute
selection algorithm, the push threshold configuration algorithm
should select a push thresholdl∗i for each attributeai ∈ A∗,
so that the total cost as in Equation (2) is minimized.

The idea behind push threshold configuration is similar
to push attribute selection. For each attributeai ∈ A∗, we
normalize the possible value range to[0, 1.0], and divide the
range into steps of sized. Initially all the push thresholds
are set to 0, which means every node will push its attributes
in A∗. At each step, an attributeai is selected, and its push
threshold increased froml∗i to l∗i + d. Such an increase will
reduce the push cost since fewer overlay nodes are covered
by the subspace. However, it also increases the pull cost since
more queries are uncovered by the subspace. Thus, at each

PushThresholdSelection(T, N, A,S1, S2, n, λ, A∗)
1. let l∗i = 0, for1 ≤ i ≤ |A∗| andf2 = p2 = 1
2. computemin cost according to Equation(2)
3. let B andB′ be the histogram bins for nodes and queries
4. while B 6= ∅ do
5. selectai that has the largest cost reduction.
6. if the cost reduction is< 0 then break
7. increasel∗i to l∗i + d
8. remove all nodes and queries not covered by{l∗i }
9. subtract the cost reduction frommin cost
10.return{l∗i }

Fig. 4. Push Threshold Selection Algorithm.

step the attributeai is selected in a way that maximizes the
net cost reduction. The above process is repeated until either
every push threshold has reached its maximum, or there is no
attribute with positive cost reduction.

The pseudo code for the push threshold selection algorithm
is show in Figure 4. The main difference from push threshold
selection is how to compute cost reduction given a particular
configuration. In the algorithm,B and B′ are the histogram
bins for the node attribute and query distribution. Each bin
in B or B′ is described by a tuple of|A∗| + 1 fields.
The first |A∗| fields define the bin, and the last field is the
percentage of nodes/queries in the bin. For example,b =
(v1, v2, · · · , v|A∗|, 0.1) ∈ B means 10% of the machines have
attributeai ∈ [vi, vi + d), 1 ≤ i ≤ |A∗|.
C. Push Interval Selection

Given the selected push attributesA∗ and push thresholds
{l∗i |ai ∈ A∗}, The goal of push interval selection is to select
push intervalT ∗i for each attributeai ∈ A∗, so that the total
system cost according to Equation (3) is minimized.

The push interval selection algorithm works much the same
way as the previous two algorithms and thus it is only briefly
described here. Initially the push intervalT ∗i for eachai ∈ A∗

is set to a minimum value (i.e., this is the smallest interval
that monitoring sensors can push attribute data periodically).
Thereafter, at each step, an attribute is selected and the
corresponding push interval incremented (by some constant
step size). The attribute is selected so that the increase of
its push interval results in the largest cost reduction. This is
repeated until every push interval has reached some maximum
value, or the increase of any push interval would result in
negative cost reduction. The cost reduction is computed as the
reduced push cost due to slower push minus the increased pull
cost due to more queries being pulled (because their staleness
constraint cannot be satisfied by the pushed data).

D. Practical Issues

There are several practical issues that need to be mentioned
about our algorithms. First, when we resolve a query by pull,
the pulled data can be cached for future query resolution.
However, this is unlikely to have a big impact on our query
resolution, since the data are not periodically refreshed, thus
will timeout within a short period of time. Second, the push

interval selection assumes each attribute is independently
pushed. This may be undesirable due to a lot of small
messages. This can be solved as follows. Suppose the set
of push intervals have been selected, and the smallest push
interval isT ∗i , we can normalize everyT ∗j to T ∗i b

T∗j
T∗i
c, which

is the largest multiple ofT ∗i that is still≤ T ∗j . This way other
attributes can be piggybacked to the push messages forai.

IV. EXPERIMENTAL EVALUATION

In this section we present an experimental evaluation of
InfoEye system. We first describe our simulation methodology
and results, then present the prototype implementation of
InfoEye and our experiment results from the PlanetLab [11].

A. Evaluation Methodology

Our simulator consists of aquery generator that can
generate a range of different kinds of query workload, a
query collectionthat captures the statistical query patterns, and
three configuration modules (i.e., popular attribute selection,
push threshold configuration, and push interval configuration).
Unless otherwise specified, the system size isN = 3000, the
default push interval isT = 30 seconds, the total number of
attributes is|A| = 50, the number of nodes to be probed for
each pull isn = 50, the push packet size isS1 = 1000 bytes
and the probe packet size isS2 = 100 bytes. Our parameters
are chosen to represent a “typical” system. For example,
in the CoMon [1] monitoring service currently running on
the PlanetLab, each resource report contains more than 40
attributes, and has about 900 bytes6.

Our query generator uses similar methods as previous
work [10] for query generation. For each query, we first
decide the number of attributes in a query, which is uniformly
distributed between[1, k], 1 ≤ k ≤ |A|. Next, the specified
number of attributes are selected fromA. The probability
that an attribute is selected follows the Zipf [4] distribution.
After that, the lower bound on each attribute is generated.
We assume that the value range of each attribute is divided
into 50 equal sized bins (intervals). The lower bound for an
attribute is generated according to a Zipf distribution, but
biased toward the highest value. To generate node attribute
values, we use a probability distribution that mimics the actual
attribute distribution we observed on the PlanetLab, namely,
most nodes have moderate attribute values, but a small number
of nodes will have very large or very small attribute values.

We use the total system cost defined in Section II-C as the
main evaluation metric. For each experiment, we first generate
a set of “training queries” (usually 2000 of them) using the
query generator. The query arrival follows a Poisson process
with a mean arrival rateλ. We then run our algorithms to
configure the InfoEye system (i.e., to select push attributes,
push thresholds, and push intervals). Next, we generate another
set of “validation queries” according to the same model, and
resolve the queries against our system configuration. The cost

6CoMon is essentially a push based system. In order to minimize the
monitoring overhead, the push interval is set to 5 minutes.

5 6 7 8 9 10 11 12 13 14 15
200

300

400

500

600

700

800

900

1000

1100

1200
Total cost for push threshold selection

to
ta

l s
ys

te
m

 c
os

t (
K

bp
s)

query arrival rate λ (number of queries per second)

k = 1
k = 3
k = 5
pure push
pure pull

Fig. 6. Push threshold selection.

5 6 7 8 9 10 11 12 13 14 15
200

300

400

500

600

700

800

900

1000

1100

1200
Total cost for push interval selection

query arrival rate λ (number of queries/second)

to
ta

l s
ys

te
m

 c
os

t (
K

bp
s)

k = 1
k = 3
k = 5
pure push
pure pull

Fig. 7. Push interval selection.

of the system for resolving the validation queries is computed.
Each experiment is repeated 200 times, and the average cost
is reported.

We mainly compare the system cost of InfoEye to that of the
two static approaches, pure push and pure pull. In pure push-
based systems, each monitoring sensor periodically reports all
attribute data using the default push interval. Thus, the system
cost is independent of the query arrivals. In pure pull-based
systems, no periodic information push is involved. thus the
system cost is proportional to the rate of query arrivals.

B. Simulation Results

Figure 5 shows the performance of our attribute selection
algorithm. Figure 5(a) shows the system cost of InfoEye for
different query arrival rate and maximum number of attributes
k in a query. Figure 5(b) shows the number of attributes
selected for push. The results show that InfoEye consistently
performs better than both pure push and pull approaches.
When the query arrival rate is small, pure push involves a lot
of unnecessary overhead. At this time, InfoEye can configure
the monitoring sensors to push only a small number of most
popular attributes (as shown in Figure 5(b)), and achieve
a small system cost similar to pure pull. When the query
arrival rate increases, the cost of pure pull increases linearly.
However, InfoEye can configure the monitoring sensors to
push more attributes. As a result, its system cost is always
smaller than either pure push or pure pull. If the system is
statically configured, the system cost would be many times
that of InfoEye for either small or large query arrival rates.

5 6 7 8 9 10 11 12 13 14 15
200

300

400

500

600

700

800

900

1000

1100

1200
Total cost for push attribute selection

to
ta

l s
ys

te
m

 c
os

t (
K

bp
s)

query arrival rate λ (number of queries/second)

k = 1
k = 3
k = 5
pure push
pure pull

(a) Cost of multi-attribute queries.

5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

40

45

50
Number of attributes selected for push

query arrival rate λ (number of queries/second)

nu
m

be
r

of
 a

ttr
ib

ut
es

 s
el

ec
te

d
fo

r
pu

sh

k = 1
k = 3
k = 5

(b) Number of attributes selected.

Fig. 5. Attribute Selection Results

0 200 400 600 800 1000 1200
0

500

1000

1500
InfoEye adaptivity to query arrival rate changes

co
st

 fo
r

ev
er

y
10

 s
ec

on
d

pe
rio

d
 (

K
B

)

time (seconds)

push cost of InfoEye
total cost of InfoEye
pure push
pure pull

Fig. 8. Adaptivity to query rate.

Figure 6 shows system cost when both attribute selection
and push threshold selection are applied. The node attribute
data are generated using the distribution described in Sec-
tion IV-A, and the “moderate value”v is 5. We can see that
when the query arrival rateλ is small, the cost of InfoEye is
similar to Figure 5(a). This is because whenλ is small, |A∗|
is small. As a result, the system cost is dominated by pulling
attributes that are not inA∗. However, whenλ is large, more
attributes are pushed, and the effect of push threshold selection
becomes more significant. Figure 7 shows the system cost
when all three algorithms are applied. The push interval for
pure push isT = 30 seconds. The query staleness requirement
follows a distribution similar to that used for node attribute
distribution. The minimum requirement is 30 seconds, the
maximum requirement is 180 seconds, and the moderate value
is 50 seconds. Figure 7 shows that by pushing the attributes at
a frequency that satisfies most (but not all) query requirement,
we can further reduce the system cost so that even when the
query arrival rate is large, the total cost of InfoEye is about
25% smaller than pure push7.

We now examine the adaptivity of InfoEye, i.e., its ability
to re-configure itself in response to dynamic query pattern
changes. We only show the results of push attribute recon-
figuration due to the space limitation. Figure 8 shows the

7Figure 7 shows that whenλ is large, the cost fork = 5 is can actually
be smaller thank = 3. This is because fork = 5, more attributes are pushed
as indicated in Figure 5. As a result, push interval selection has more space
for improving the push cost.

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400
InfoEye adaptivity to query popularity changes

time (seconds)

co
st

 fo
r

ev
er

y
10

 s
ec

on
d

pe
rio

d
(K

B
) push cost of InfoEye

total cost of InfoEye

Fig. 9. Adaptivity to popularity.

adaptivity of InfoEye when the query arrival rate changes.
For this experiment, initially the mean query arrival rate
is four queries/second. After the initial configuration, we
generate validation queries and record the total system cost
every 10 seconds. An exponential weighted moving average
of this “instant cost” is then compared with the system cost
predicted by Equation (1). If the difference between the two
costs exceeds 20%, a re-configuration is initiated. For this
experiment, we also use a “historical query window” of the
recent 2000 queries. System re-configuration is based on these
historical queries. At time 400, we change the query arrival
from 8 to 12. Figure 8 shows that the higher query arrival rate
results in higher system cost. At time 470, InfoEye detects the
system change and re-configures itself to push more attributes.
Although push cost is increased, the total system cost is
reduced since less queries need to be resolved by pull. Figure 8
also shows the cost of pure push and pull. We can see when
the query arrival rate is 4, the cost of InfoEye is close to that
of pure pull. Both are much smaller than pure push. After
the reconfiguration, the cost of InfoEye is close to that of
pure push, and both are much smaller than that of pure pull.
Figure 9 shows the adaptivity of InfoEye to attribute popularity
changes in the queries. The experiment settings are similar to
the previous one, except the mean query arrival rate is 10 for
the whole experiment. At time 400, we switch the popularity
of the top three and bottom three attributes. We observe that
InfoEye can quickly detect this change and reconfigure itself.
Because at this time, the history queries are a mixture of

two different patterns, only a smaller number of attributes are
selected. After another 120 seconds or so, most queries in the
history window are from the new distribution. As a result,
InfoEye reconfigures again and selects the right subset ofA∗

for push.

C. Prototype Results

We have implemented a prototype of our InfoEye system
and deployed it on the PlanetLab [11] testbed. We have
a monitoring sensor on each PlanetLab node, which can
periodically check the local resource attributes and push the
data to the management node. The management node is
responsible for storing the pushed attribute data and answering
queries. It is also responsible for running the configuration
algorithms and configure the monitoring sensors based on the
computed system parameters such as the push threshold for
each attribute. Currently we have only integrated the push
threshold selection algorithm with our management node. In
addition to the monitoring sensors and the management node,
we have a query client. This query client again generates
synthetic queries and send the queries to the management
node. The management node and query client are run on a
local machine.

Our experiments involve about 280 PlanetLab nodes. Each
monitoring sensor samples the local resource values every
10 seconds, and compares them with the configured push
thresholds. If the resource values are greater, the attribute data
are pushed to the management node. The management node
accepts the pushed data and answers queries. It also invokes
the push threshold selection algorithm every 60 seconds8.
The new push thresholds are then sent to all monitoring
sensors. The query client can generate queries of different
patterns and send the queries to the management node. Each
query specifies requirements on three attributes: available CPU
time, amount of free memory, and amount of free disk space.
The management node keeps a sliding window of past 1000
queries for the push threshold configuration. Each time before
the configuration, the management node also runs a global
aggregation query to get the node attribute distribution for the
whole system. Under the above settings (e.g., 280 nodes and
1000 historical queries), each configuration run takes about
3ms, and the memory consumption of the management node
is under 5MB.

For the first experiment, we first let the query client
generate queries that require small amount of CPU time, free
memory and disk space. Specifically, the lower bound for
these attributes are randomly distributed within [10%, 20%],
[10MB, 20MB] and [10GB, 20GB], respectively. After about
12 minutes, the query pattern is changed. The queries now
require a minimum of CPU, free memory and disk space that
are randomly distributed within [20%, 30%], [20MB, 30MB]
and [20GB, 30GB], respectively. The query arrival rate is 4
per second for the entire experiment. Figure 10 shows the push

8System reconfiguration can be triggered by either a timer or any changes in
system parameters. Our current prototype only implements the timer-triggered
reconfiguration.

0 5 10 15 20 25
8

10

12

14

16

18

20
Configured push threshold for available CPU time

pu
sh

 th
re

sh
ol

d
fo

r
C

P
U

 ti
m

e
(p

er
ce

nt
ag

e)

experiment time (minutes)

Fig. 10. Push threshold for CPU.

0 5 10 15 20 25
20

30

40

50

60

70

80

90

100
Percentage of covered nodes and queries

pe
rc

en
ta

ge

experiment time (minutes)

percentage of covered nodes (f2)
percentage of covered queries (p2)

Fig. 11. Covered nodes and queries.

threshold configured by the management node every minute.
Initially the push threshold for CPU time is configured to
be a little less than 10%. After the pattern change, the push
threshold is configured to be a little less than 20%. The push
threshold for free memory and disk space show similar trend
and are therefore omitted. From Figure 11 we can see the effect
of such system configuration. Initially, since the push threshold
is low, about 80% of the nodes need to periodically push their
attributes. When the query pattern has changed and the queries
require more resources, less nodes can satisfy the queries.
Our push threshold selection algorithm correctly recognizes
this, and configures the push thresholds to higher values. This
results in only about 30% of the nodes periodically push
their attribute data. Although this means a small proportion
of queries (1 − p2) have to be resolved by pull, the overall
system cost is reduced, due to large savings in the push cost.

Figure 12 and Figure 13 show the same results for a different
query pattern change. For this experiment, during the first 15
minutes, the queries are generated just like the first experiment.
Thereafter, the query distribution is not changed, but the mean
query arrival rate is changed to 2. Figure 12 shows when the
query arrival rate decreases, the configured push threshold for
CPU is increased. The reason is that a smaller query arrival
rate means a smaller overhead for query pull. As a result, the
system cost can be reduced by slightly increasing the push
threshold, which leads to smaller percentage of nodes that
periodically push their data, and a small percentage of queries
that need to invoke pull operations (as shown in Figure 13).

0 5 10 15 20 25 30 35 40
8.5

9

9.5

10

10.5

11
Configured push threshold for available CPU time

experiment time (minutes)

pu
sh

 th
re

sh
ol

d
fo

r
C

P
U

 ti
m

e
(p

er
ce

nt
ag

e)

Fig. 12. Push threshold for CPU.

0 5 10 15 20 25 30 35 40
60

65

70

75

80

85

90

95

100
Percentage of covered nodes and queries

pe
rc

en
ta

ge

experiment time (minutes)

percentage of covered nodes (f2)
percentage of covered queries (p2)

Fig. 13. Covered nodes and queries.

V. RELATED WORK

Distributed information management is critical for any
large-scale system management infrastructure. For example,
both the CoMon PlanetLab monitoring service [1] and the
Grid Monitoring/Discovery Service (MDS [5]) have proven
extremely useful for their user communities. However, for
practical purposes, both systems are statically configured.
Every node pushes all attribute data to a central server at fixed
intervals, even when the attribute data are unlikely to satisfy
application queries.

Astrolabe [13] and SDIMS [15] are two representative
scalable distributed information management systems. Both
rely on hierarchical aggregation as a fundamental abstraction.
Astrolabe maintains one aggregation tree and uses gossip
protocols for data reconciliation. SDIMS is built on top of
a distributed hashtable (DHT) and utilizes DHT routing to
build multiple aggregation trees. Data aggregation allows these
systems to achieve very good scalability. However, it also
means the primary focus of these systems is aggregation
queries such as MIN, MAX, and SUM. In contrast, InfoEye
considers multi-attribute range queries that must be resolved
using detailed information about individual nodes. Several
systems such as Mercury [3], SWORD [10] and PIER [8]
can support multi-attribute range queries. However, their fo-
cus is on how to resolve queries in different decentralized
architectures. InfoEye is complementary to these systems in
that it looks at a new design dimension. The idea of utilizing
statistical query patterns can potentially be applied to different
architectures.

Combining push and pull based information access has been

explored by some previous work in different contexts such as
delivering dynamic web objects to clients [6] and collecting
data in a sensor network [12]. Although the general idea of
combining push and pull is not new, we should emphasize
applying the idea to a specific environment requires non-trivial
system analysis and design. In our case, it means identifying
application query patterns and deriving the analytical model
for total system cost, which makes it possible for adaptive
push/pull configuration.

Wills et. al. [14] have considered the problem of adaptive
resource information management. However, they assume an
environment where multicast is used to disseminate informa-
tion requests or updates, and the goal is to decide whether
requests or updates should be multicast, based on the local
observation of each node in the system. Thus it is also different
from our system.

VI. CONCLUSION

We have presented the design and evaluation of InfoEye,
a novel model based, self-adaptive distributed information
management system. The goal of InfoEye is to resolve multi-
attribute queries in large-scale dynamic distributed systems
with minimum monitoring overhead. To achieve this goal,
InfoEye maintains statistical information about both applica-
tion queries and node attribute distributions, and dynamically
configure itself to achieve minimum management overhead.
Through extensive simulation studies, we show that InfoEye
can achieve much lower management overhead than static
solutions. More importantly, when the query pattern changes,
InfoEye can quickly re-configure itself to adapt to the changes.
We have also implemented a prototype of the InfoEye system
and validated the feasibility and performance on a real network
environment. A web based query interface is also provided at
http://cairo.cs.uiuc.edu/monitoring/.

Our current InfoEye system can be seen as a first step to
demonstrate the feasibility of adaptive information manage-
ment. As ongoing work, we are considering applying the same
idea to overlay link monitoring, which is important for many
distributed networked applications.

REFERENCES

[1] CoMon. http://comon.cs.princeton.edu/.
[2] World Community Grid.http://www.worldcommunitygrid.org.
[3] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting

scalable multi-attribute range queries. InSIGCOMM 2004, August 2004.
[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching

and Zipf-like Distributions: Evidence and Implications. InIEEE Infocom
1999, 1999.

[5] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource sharing. InThe 10th IEEE
Symposium on High Performance Distributed Computing (HPDC10),
2001.

[6] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy.
Adaptive push-pull: Disseminating dynamic web data. InWWW10, May
2001.

[7] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid:
Enabling scalable virtual organizations.International J. Supercomputer
Applications, 2001.

[8] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica. Querying the internet with PIER. InProceedings of 29th
VLDB Conference, 2003.

[9] J. Liang, S. Y. Ko, I. Gupta, and K. Nahrstedt. Mon: On-demand overlays
for distributed system management. InSecond Workshop On Real, Large
Distributed Systems (WORLDS’05), December 2005.

[10] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and
implementation tradeoffs for wide-area resource discovery. InHPDC-14,
July 2005.

[11] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the internet. In1st Workshop
on Hot Topics in Networks (HotNets-I), Princeton, New Jersey, October
2002.

[12] N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Hybrid
push-pull query processing for sensor networks. InWorkshop on Sensor
Networks at Informatik, 2004.

[13] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and
scalabel technology for distributed system monitoring, management, and
data mining.ACM Transactions on Computer Systems, 21(2):164–206,
May 2003.

[14] C. E. Wills and S. Chandra. Adaptive resource management, 1995.
[15] P. Yalagandula and M. Dahlin. A Scalable Distributed Information

Management System.Proc. of SIGCOMM 2004, Aug. 2004.

