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Abstract— Emerging stream processing applications such as
on-line data analysis often need to acquire streaming information
from geographically dispersed locations (e.g., different sensor net-
works). Different from conventional discrete data (e.g., messages),
streaming data are often time-varying and long-lived, which
provides both new challenges and opportunities for optimizing
wide-area continuous information dissemination. In this paper,
we present BridgeNet, a novel adaptive multi-source stream
dissemination overlay network, which can efficiently collect
streaming information from distributed locations and disseminate
aggregated information to different stream consumers. BridgeNet
provides a new distributed cell treestructure for multi-source
stream aggregations, which can adaptively expand or contract
itself in response to workload changes. In particular, Brid-
geNet performsstream-pattern-basedcell tree adaptations, stream
clustering, and overlay topology adaptations to deliver efficient
stream dissemination without losing system stability. For failure
resilience, BridgeNet provides light-weight backup schemes to
achieve fast failure recovery. We have implemented a prototype
of BridgeNet and conducted extensive experiments using both
simulations and Planetlab deployment. The experimental results
based on both synthetic workload and real data streams show
that BridgeNet outperforms existing schemes for efficient multi-
source stream dissemination.

I. I NTRODUCTION

Many real-world applications require on-line data analysis
on continuoustime-varyingdata streams, where data arrival
rates can dynamically change over time. Examples of such
data streams include stock prices, financial trading records,
and sensor readings. Previous work has developed core data
stream processing systems (e.g., [23], [17], [35]) to provide
continuous query processing over dynamic data streams. How-
ever, stream sources are often dispersed at different distributed
locations such as different sensor networks. Furthermore,
applications often need to simultaneously access multiple data
streams such as “tracking top ten largest vehicle traffic vol-
umes among 100 major intersections” or “counting the number
of servers among 1000 content servers whose access frequen-
cies are larger than 1000 times/second”. To fill the gap between
distributed stream sources and different stream consumers, a
multi-source stream dissemination (MSSD) system is highly
desirable, which can (1) relieve stream sources and consumers
from the burden of collecting, aggregating and disseminating
various data streams over Internet; (2) perform in-network
stream aggregation to reduce wide-area network traffic; and
(3) avoid redundant aggregation and dissemination operations
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Fig. 1. Multi-source streaming information dissemination.

between a common set of stream sources and consumers. The
goal of our research is to explore the design and implementa-
tion of the MSSD system, illustrated by Figure 1. Each MSSD
session consists of two phases: (1)aggregation phasewhere
data streams generated from geographically dispersed sources
are merged into a single result stream via an aggregation tree;
and (2)distribution phasewhere the result stream is distributed
to different stream consumers via a distribution tree.

Previous data dissemination systems such as publish-
subscription systems (e.g., SIENA [7], Gryphon [3],
Sieve [15], and Kyra [6]) mostly concern about matching
published information with subscriptions using selection pred-
icates, and often deal withdiscretedata items such as mes-
sages and events. In contrast, our research focuses on the
new challenges of delivering time-varying continuous data
streams over Internet. First, streaming information are often
time-varyingwhere data items are continuously produced by
different sources with fluctuating rates. This implies that the
stream dissemination workload is likely to change during
runtime. Thus, any static schemes will be either over-sufficient
by wasting system resources, or under-sufficient by failing to
meet workload requirements. Luckily, data streams are often
long-lived, which allows the system to observe stream arrival
patterns and perform meaningful adaptations. Second, wide-
area stream dissemination needs to scale to a large number of
geographically dispersed stream sources and consumers. Thus,
the system needs to employ a decentralized and self-managed
architecture to achieve scalability and efficiency. Third, data
items of different streams often arrive in an asynchronous
fashion. This property provides a new optimization opportunity
for minimizing the aggregated rate of an aggregation node by
clustering streams based on their arrival patterns.



2

In this paper, we present BridgeNet, a novel adaptive multi-
source data stream dissemination service overlay. BridgeNet
employs a set offully distributed, stream-pattern-based, adap-
tive algorithms for disseminating multi-source data streams
over Internet. BridgeNet explores thelong-lived and time-
varying features of data streams by tracking data arrival
patterns of different streams. Based on the knowledge of
data arrival patterns, BridgeNet can make informed adaptation
decisions for provisioning and maintaining different MSSD
service sessions and the underlying overlay mesh. Specifically,
this paper makes the following contributions:

• We propose a newdistributed cell treestructure that
can adaptively expand or contract itself to meet dynamic
stream processing workload requirements with a mini-
mum aggregation tree. Thus, we can achieve both lower
stream dissemination delay and higher system throughput
than existing non-adaptive algorithms. The units of a
cell tree, called cells, can also migrate from one host
to another for reducing dissemination delay or improving
load balancing.

• We present a set ofpattern-basedadaptation algorithms
to achieve efficient stream dissemination without losing
system stability. We apply time series analysis techniques
to derive the frequencies of load variations at different
aggregation node. Thus, we can perform meaningful
adaptations during “stable period” when the workload
does not fluctuate at high frequency. Further, we conduct
stream clustering based on the correlations among the
data arrival patterns of different streams. We strive to con-
nect “complementary” streams with negative-correlated
data arrival patterns to the same aggregation node to
achieve low-variance aggregated workload.

• For failure resilience, we provide light-weight backup
schemes to achieve fast failure recovery. Different from
reactive failure recovery, proactive scheme maintains a
few backups in advance for reducing failure recovery time
for delay-sensitive stream dissemination services.

• We provide dynamic overlay topology maintenance al-
gorithms with the goal of minimizing overlay stretch for
current stream dissemination sessions. The basic idea is to
make the overlay topology congruent with the connection
requirements of current cell trees to avoid overlay-layer
relay as much as possible. Thus, the neighbor set of
each overlay node is dynamically selected based on the
communication patterns of current stream dissemination
sessions.

• We have implemented a prototype of the BridgeNet
system and conducted extensive experiments using both
simulations and wide-area network testbed PlanetLab
[27]. The experimental results show the performance
advantages of our approach compared to other alternative
approaches.

The rest of the paper is organized as follows. Section II
presents the system model and problem formulation. Section
III presents the design and algorithms details of the Brid-
geNet system. Section IV presents a thorough experimental
evaluation to show the benefits of our approaches. Section
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Fig. 2. Architecture of stream dissemination overlay.

V discusses related work. Finally, Section VI concludes this
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The multi-source stream dissemination service provides a
“bridging” mechanism connecting different stream sources
and stream consumers dispersed in the wide-area network.
BridgeNet adopts an overlay-based approach to wide-area
stream dissemination for failure resilience [1] and quality-
of-service (QoS) management [18], illustrated by Figure 2.
BridgeNet consists of cooperative overlay nodes (vi) con-
nected via application-level virtual links (ei). Different multi-
source stream dissemination (MSSD) sessions are dynamically
provisioned on top of the shared overlay mesh. Data stream
processing (i.e., aggregation or distribution) is often resource-
intensive, which can exceed the resource capacity (e.g., net-
work bandwidth, CPU, memory) of a single host. Thus, Brid-
geNet performs both stream aggregation and stream distribu-
tion hierarchically using a set of overlay nodes connected into
an aggregation tree1 or a distribution tree. The aggregation tree
and distribution tree are connected via a common root node
calledrendezvous point[5]. The distribution phase is similar to
previous content distribution services, which can be delivered
using overlay multicast trees (e.g., [20], [9]). In contrast,
the aggregation tree is connected with multiple, distributed,
time-varying stream sources, which demands stream-oriented,
adaptive schemes to construct the aggregation tree2.

The aggregation phase performs continuous data stream
aggregation using an application-specified n-way continuous
aggregation function3 f(S1, ...Sn). The goal of the aggregation
phase is to perform data summarization and filtering to reduce
the stream dissemination workload. Many aggregation function
has such load reduction capability, such as (1) TOP-K function
that keeps track ofk hot-spot content servers with highest ac-
cess frequencies; and (2) SELECT-COUNT function that first
selects the values of distributed sensor readings according to a
select predicate and then calculates the mean of those selected
values. We useSi to denote a data stream that consists of a
sequence of data items denoted bysi ∈ Si. In reality, many

1We assume that the aggregation function can be decomposed into a set of
smaller aggregation functions, each of which only processes a subset of input
streams. This is generally true for most common aggregation functions such
as TOP-K, MEAN, UNION, SUM, and COUNT.

2Although this paper focuses on the aggregation phase, the scheme can also
be applied to the distribution phase if necessary.

3In this paper, we limit ourselves to the case of performing a uniform
multi-way aggregation function in each MSSD session.
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data streams (e.g., sensor readings, stock trading records) are
time-varying, where data can arrive in a bursty fashion. Thus,
the aggregation workload can dynamically change over time.
Any static aggregation would be either over-sufficient wasting
resources or under-sufficient causing degraded service quality.
Thus, we need to dynamically adapt the aggregation tree based
on the data arrival patterns of different stream sources. We
use data arrival time seriesAi, 1 ≤ i ≤ k to describe the
arrival pattern of the streamSi, which is called thesignature
of Si. The data arrival time series consist of a sequence of
time-stamped numberai,k ∈ Ai that denotes the number
of data items produced bySi during the k-th time epoch.
We maintain a moving window of data arrival time series
Ai = {ai,1, ..., ai,w} to represent the current signature of the
streamSi.

Each overlay node can provide stream aggregation and
distribution processing functions for multiple stream dissemi-
nation sessions according to its resource capacity. The stream
aggregation/distribution functions are performed by the aggre-
gation/distribution cells (Ci). All the stream processing cells
share the resources of one physical host proportionally. Each
aggregation cell has multiple input ports for receiving input
streams and one output port for generating the result streams.
The aggregation computation is performed periodically at the
end of each time epoch. LetSi[t, t + 1] denote the set of
stream items arrived during the time period[t, t + 1). The
aggregation cell performs the aggregation function over all the
non-empty stream set4 (i.e., Si[t, t+1] 6= ∅). In contrast, each
distribution cell has one input port for receiving the aggregated
stream. The distribution cell simply replicates each input into
multiple copies that are sent to different down-stream cells or
end-users.

Each overlay nodevi is connected with a number of other
overlay nodes called neighbors via overlay links. Each overlay
link ei is mapped into a network path in the underlying IP
network. The number of neighbors to which an overlay node
is connected is called the degree of the overlay node. Logically,
if there is a data stream flowing fromvi to vj , vj should be
the neighbor ofvi in the overlay mesh. For QoS management,
each overlay node needs to periodically monitor the conditions
of its neighbors and adjacent overlay links such as the load
conditions of its neighbors and the network delay/bandwidth
of its adjacent overlay links. However, for scalability, each
overlay node can only select a limited number of nodes as its
neighbors since a fully connected mesh can incur excessive
maintenance overhead. When two overlay nodes (e.g.,v2

and v3 in Figure 2) are not directly connected, the stream
transmission between them has to go through an overlay path
consisting of multiple overlay links. Thus, an overlay mesh
with node degree constraint can cause degraded network QoS
(e.g., longer delay) than the original IP path, which is called
overlay stretch[20].

BridgeNet aims at achieving the following design goals to
meet the new challenges of disseminatingtime-varying stream-
ing informationover Internet: (1)scalabilitywhere the system

4If there are multiple data items inSi[t, t + 1], the aggregation cell first
perform a merge operation (e.g., union or mean) over all the data items arrived
in the stream buffer based on the definition of the aggregation function.

must scale well in the presence of many stream sources and
stream consumers; (2)timelinesswhere data streams should
be delivered to all stream consumers in a timely fashion (i.e.,
with minimum dissemination delay5; and (3)failure resilience
where the system should be able to quickly recover the
failures of overlay nodes or links to provide continuous stream
disseminations. Essentially, BridgeNet addresses the following
major problems to achieve the above design objectives:

Problem 1: How to maintain a minimum aggregation tree6

to meet the dynamic workload requirements of an MSSD
session?

Problem 2: How to place aggregation cells on different
overlay nodes to achieve best dissemination delay and load
balancing?

Problem 3: When to trigger system adaptations to achieve
efficiency without losing system stability?

Problem 4: How to quickly recover the failure of an MSSD
session with minimum service disruption?

Problem 5: How to efficiently adapt the overlay topology to
achieve minimum overlay stretch for current MSSD sessions?

III. D ESIGN AND ALGORITHMS

In this section, we present the design and algorithm details
of the BridgeNet system including (1) pattern-based cell adap-
tation triggering algorithm; (2) complementary stream cluster-
ing algorithm for efficiently distributing workload among dif-
ferent cells; (3) decentralized cell tree adaptation algorithms;
(4) failure resilience management schemes; and (5) dynamic
overlay mesh topology configuration algorithm.

A. Stable Cell Tree Adaptation Triggering

At the beginning of a session, the cell tree contains only
the root cell that is instantiated on the rendezvous host7.
During runtime, the cell tree can dynamically expand or
contract itself via cell splitting or merging to adapt to stream
processing workload changes. One major challenge is to
achieve good tradeoff between adaptability and stability. If
the system responds to every workload fluctuation, the cell
tree may be frequently expanded and contracted back and
forth, which makes the system highly unstable. To address the
problem, we propose apattern-based adaptation triggering
(PAT) algorithm to achieve stable cell tree adaptations by
observing the workload variation patterns. A cell adaptation
action is only triggered during “stable period” when the
workload does not fluctuate at high frequency. We use a
moving window of time seriesLi = {li,0, ..., li,N−1} to denote
the time-varying load levels of a cellCi, where the value of

5The dissemination delay includes both stream processing delay and
network transmission delay.

6By minimum, we mean the aggregation tree consists of a minimum number
of aggregation cells, which can lead to minimum resource consumptions and
lowest dissemination delay.

7The rendezvous host is selected as follows: We first create a set of cells to
connect with all stream sources, which then concurrently run a multicast tree
algorithm to get the average delay of the paths to all the stream consumers.
The root of the multicast tree with minimum average delay is selected as the
rendezvous host. The goal of the above selection algorithm is employ a best
multicast tree for the distribution phase.
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Procedure: Complementary-Stream-Clustering (CSC)
input : m pointsp1, ...pm

output: two clustersN1, N2

1. Select two distant pointspc1 andpc2 as two initial centroids
2. while changes of centroids are larger than a certain threshold
3. for all the other pointspk, 1 ≤ k ≤ m, k 6= c1, c2

4. calculate distanced(pk, N1) = cor(Ak,
P

pz∈N1

Az) + 1

5. calculate distanced(pk, N2) = cor(Ak,
P

pz∈N2

Az) + 1

6. insertpk to the cluster with smaller distance
7. calculate new centroidsp′ct

=
P

pz∈Nt

Az/|Nt|, t = 1, 2

Fig. 3. Complementary stream clustering.

li,k denotes the k-th sampled load value8. Our load variation
evaluation is based on Discrete Fourier Transform (DFT).
The Fourier transform represents the original signal (i.e., load
time series) as a linear combination of the complex sinusoids
sf (n) = e2πikn/N√

N
, i =

√−1. The DFT of a load time series
{li,0, ...li,N−1} consists of a vector of complex numbers:

L(fk) =
N−1∑
n=0

li,ne−i2πkn/N , 0 ≤ k ≤ N − 1, (1)

where fk = 2πk/N denotes the k-th frequency. Thus, the
Fourier coefficients represent the amplitude of each of these
sinusoids. We can then identify the dominant frequencies by
calculating the signal power at each frequency. We evaluate the
fluctuation degree of load time series by examining whether its
dominant Fourier coefficients (i.e., the top-k frequencies that
carry most of the signal energy) fall into high frequency range.
Thus, the cell adaptation is triggered only when the dominant
frequencies of load time series are below a certain frequency
threshold. For example, the PAT algorithm can dampen adap-
tation triggering when the cell workload frequently changes
around the threshold value.

B. Complementary Stream Clustering

We propose acomplementary stream clustering(CSC)
algorithm to group different input streams based on their
data arrival patterns. Using maintained stream data arrival
time seriesAi = {ai,1, ..., ai,w}, we can calculate arrival
rate variancevar(Ai) of a single streamSi, and arrival rate
covariancecov(Ai, Aj) between two streamsSi and Sj as
follows,

var(Ai) =
1
w

w∑

k=1

(ai,k − 1
w

w∑

k=1

ai,k)2 (2)

cov(Ai, Aj) =
1
w

w∑

k=1

ai,kaj,k − (
1
w

w∑

k=1

ai,k)(
1
w

w∑

k=1

aj,k) (3)

Based on the signatures of the two streamsSi and Sj , we
calculate the statistical data arrival correlationcor(Ai, Aj)
betweenSi andSj as follows,

cor(Ai, Aj) =
cov(Ai, Aj)√

var(Ai)
√

var(Aj)
(4)

8The load metric is a configurable parameter, which can be band-
width/CPU/memory requirements, or a composite metric combining different
resource cost.

The value ofcor(Ai, Aj) is in the range of[−1, 1]. The arrival
patterns of two streamsS1 andS2 are called “complementary”
if A1 and A2 have negative correlation (i.e.,cor(Ai, Aj) is
close to−1). We strive to connect complementary streams
to the same aggregation cell to achieve smooth aggregated
workload with minimum variance. When a splitting action
is triggered, the cell needs to decide which input streams
to keep and which input streams to offload to the new cell.
We perform the stream clustering using a modified K-means
(K=2) clustering algorithm [14]. Suppose the cellCi has
m input streamsS1, ..., Sm. We can construct a weighted
graph Gc where each nodepi represents a streamSi with
signatureAi and the value of an edge denotes the distance
between two nodes. To group negative correlated streams into
one cluster, we define the distance between two nodes as
d(pi, pj) = cor(Ai, Aj) + 1. Thus, d(pi, pj) = 0 when Ai

and Aj are negative correlated andd(pi, pj) = 2 when Ai

and Aj are positive correlated. Figure 3 shows the pseudo-
code of the CSC algorithm that includes the following steps:
(1) randomly select one pointpi to represent the centroid of
one cluster and then select the other pointpj that has the
largest distance frompi to represent the centroid of the other
cluster; (2) assign all the other points to the closest cluster9;
(3) calculate the mean values of the two clusters to represent
their new centroid points; (4) repeat step (2) and (3) until
the change of centroid values is smaller than a pre-defined
threshold.

C. Cell Tree Adaptation Algorithms

The cell tree can be dynamically adjusted during a session
in three ways: (1) cell tree expansion via cell splitting; (2)
cell tree contraction via cell merging; and (3) cell tree self-
optimization via cell migration. Figure 4 shows the pseudo-
code of the major cell tree adaptation algorithms.

1) Cell Tree Expansion:The workload of an MSSD session
can dynamically increase when stream sources become more
active by producing data at higher rates. In response, the cell
tree expands itself via cell splitting to utilize more hosts,
illustrated by Figure 5. When the PAT algorithm triggers a cell
to split (i.e., dominant load fluctuation frequencies are lower

than certain threshold and the mean loadLi =
N−1∑
k=0

li,k/N ≥
Θ, whereΘ denotes the load constraint forCi.), we group
input streams ofCi into two clusters using the CSC algorithm.
One group of streams remains connected toCi while the other
group is connected to the new cell. If the overloaded cellCi

is not the root (e.g.,C3 in Figure 5), it splits itself into two
cells, one of which remains on the current hostvi and the
other cell is instantiated on one of the neighbors ofvi. The
new cell becomes a sibling ofCi, which is also connected to
the parent ofCi. If the overloaded cell is the root (e.g.,C0 in
Figure 5), the splitting process consists of two steps. First, the
overloaded root cell creates a new cellCj and transfer all of

9Note that our distance calculation is a bit different from the traditional k-
mean algorithm since we need to calculate the correlation between the current
stream and the aggregated workload of all streams in one cluster. If a point
has the same distance to both clusters, we select the cluster with the smaller
size.
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Procedure: Cell-Tree-Expansion
1. while ∃Ci with input S = {S1, ...Sn} is overloaded
2. if Ci is the root cell
3. create two new cellsCk andCm

4. split S into two groupsS1 andS2 using CSC algorithm
5. connectS1 to Ck andS2 to Cm

6. makeCk andCm two children ofCi

7. else if Ci is not the root cell
8. create one new cellCk

9. split S into two groupsS1 andS2

10. S1 remain connected toCi andS2 is connected toCk

11. makeCk the sibling ofCi

Procedure: Cell-Tree-Contraction
1. while ∃ Ci with parentCp is underloaded
2. for ∀ siblings ofCi, selectCj that
3. can handle the combined workload (Equ. 5)
4. and is mostly complementary toCi (Equ. 6)
5. mergeCi andCj into one cellCk

6. if Cp has only one childCk

7. mergeCp andCk

Procedure: Cell-Migration
1. for ∀ neighbor hostvk of Ci

2. if vk can accommodateCi

3. calculate reward valueR(vk) (Equ. 7)
4. select neighborvb with the largest reward
5. create a new cellC′i on vb

6. replaceCi with C′i in the cell tree

Fig. 4. Distributed cell tree adaptation algorithms.
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its children toCj . This new cell is instantiated on the least-
loaded neighbor of the current host and becomes the only
child of the root cell. Second, the new cellCj checks the
local resource availability and executes the non-root splitting
algorithm if the input workload from its children exceeds its
processing capacity. All the new cells created by the splitting
operations become the children of the root cell. The cell
splitting algorithm can be executed in a recursive manner.
The newly spawned sibling cell can still be overloaded by
the allocated workload. Thus, the new sibling cell needs to
continue to split itself until the workload of each new sibling
cell meets its processing capacity. The sibling cell splitting
can also trigger the parent cell to split since the number of its
children increases. The parent cell can split itself to generate
its new siblings for sharing the workload, which will then
trigger the grandparent cell to split. When the splitting process
propagates to the root cell, the height of the cell tree will be
increased by one.

2) Cell Tree Contraction:When input streams become less
active (i.e., slower data arrivals), the cell tree can dynamically
contract itself via cell merging to reduce resource consumption
and improve service quality (e.g., smaller delay). When the
PAT algorithm triggers a cell to split (i.e., dominant load
fluctuation frequencies are lower than certain threshold and

mean loadLi ≤ Θ/2, whereΘ denotes the load constraint for
Ci.), we need to select one best sibling cell to merge withCi

according to their load time series. LetLi = {li,0, ..., li,N−1}
and Lj = {lj,0, ..., lj,N−1} denote the load time series of
the cell Ci and its siblingCj . We first examine whether the
combined workload ofCi andCj is within the load constraint
of Cj , denoted byΘj . A cell Cj is said to be a combinable
cell for Ci if the following condition holds:

1
N

N−1∑

k=0

(li,k + lj,k) < Θj (5)

Among all the combinable sibling cells, we select the one
whose input stream arrivals are most complementary toCi for
low-variance aggregated workload. Suppose the cellCi hask
input streams whose signatures are denoted byAi,1, ..., Ai,k

and Cj has m input streams with data arrival signatures
Aj,1, ..., Aj,m. We calculate the correlation betweenCi and
Cj as follows :

cor(Ci, Cj) =
1

km
·

k∑
x=1

m∑
y=1

cor(Ai,x, Aj,y) (6)

The sibling cell that has the smallest correlation value is
selected as the best complementary cell to merge with. The
merging ofCi into Cj is performed by connecting the children
of Ci with Cj , and then deletingCi from the cell tree. Similar
to the cell splitting process, cell merging can also be recursive.
First, the merged cell can still be under-loaded, which can
continue trigger the merging operation. Second, the merging
process can trigger the parent cell to merge since the number
of its children decreases. The parent cell can then merge itself
with its sibling cells, which may trigger the grandparent cell
to merge. When the merging process propagates to the root
cell, all children of the root cell merge with each other into
one cell. The only child of the root is then merged into the
root cell, which reduces the height of the cell tree by one.

3) Cell Migration: BridgeNet supports runtime cell migra-
tion to continuously optimize the performance of the cell tree.
We can migrate a cellCi from a hostvi to one of the neighbors
vj using different criteria such as (a) shorter dissemination
delay; and (b) lower workload. Different criteria can lead
to different host comparison results. BridgeNet allows upper-
level applications to prioritize different criteria for customized
decision-making. For illustration, let us assume that criteria
(a) has higher priority than (b). Each cellCi periodically
probes its neighbor hosts to decide whether migration should
be triggered. Let us assumeCi is located atvi that hask
neighborsvn1 , ..., vnk

. In the probing message, the cellCi

sends the addresses of its parent cellvp and children cells
vc1 , ..., vcz to each of the neighbor hostsvnj , 1 ≤ j ≤ k, and
asksvnj to calculate a reward functionR(vnj ) quantifying its
change to the MSSD dissemination delay10 if we migrateCi

from vi to vnj . Let D(vi, vj) denote the dissemination delay
from vi to vj and Nt denote the number of cells included
in the subtree with rootvct , 1 ≤ t ≤ z. Note that the link

10The dissemination delay of an MSSD session is defined as the average
stream dissemination delay from all stream sources to all consumers.
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vct → vi or vct → vnj is used by
z∑

t=1
Nt + 1 paths and the

link vi → vp or vnj
→ vp is used by(

z∑
t=1

Nt + 1) paths in

the aggregation tree.

R(vnj ) = (D(vi, vp)−D(vnj , vp)) · (
z∑

t=1

Nt + 1) +

(D(vct , vi)−D(vct , vnj )) ·
z∑

t=1

·Nt, 1 ≤ j ≤ k (7)

The cellCi selects the best neighbor that has the largest posi-
tive reward value and enough resources for hostingCi. If there
are multiple neighbors with similar reward value,Ci selects the
least-loaded one. For stability, cell migration is triggered only
when the neighbor host significantly outperforms the current
host. To achieve smooth migration, we first create a new cell
C ′i on the selected neighbor host and connectsC ′i to the parent
and children ofCi in the cell tree. In the meantime, we still
useCi to serve the current MSSD session. WhenC ′i finishes
the setup, the children ofCi is notified to send their output
streams toC ′i. The old cellCi is then deleted.

D. Failure Resilience Management

BridgeNet performs proactive replication-based failure re-
covery to tolerate fail-stop failures. Different from reactive
failure recovery, proactive scheme maintains a number of
backups in advance for reducing failure recovery time. Each
cell on the cell tree, called the primary, maintains a number of
backup replicas on different hosts, called the buddy list. The
locations of the replicas can be decided based on different
pre-defined policies (e.g., using neighbor hosts for localized
replica maintenance or using remote hosts for tolerating region
failures). During runtime, the actual data streams are not
sent to all backups. Instead, the primary only sends period-
ical measurement probes to its replicas for monitoring their
liveness and performance. If any replica becomes unavailable
or unqualified, the primary cell finds another host to create
a new replica. When replicas stop receiving the heartbeat
messages (i.e., the periodical probes) from the primary, they
assume that the primary fails. Replicas then execute an election
algorithm to reach a consensus on which replica should take
over based on a pre-defined election criteria (e.g., smallest
host identifier). The elected replica then contacts the parent
and the children of the failed primary cell that are told to drop
the connection to the failed primary and connect to the new
primary cell. The number of replicas represents the trade-off
between failure resilience and replication overhead. However,
the higher-level cells in the cell tree are more important than
the lower-level cells since they are responsible for aggregating
the output streams of those lower-level cells. Thus, we adopt
a differentiated replication scheme to maintain more replicas
for higher-level cells in the cell tree.

We now briefly describe how BridgeNet handles system
churns (i.e., dynamic node departures/arrivals). When a peer
wants to join BridgeNet, it is first incorporated into the overlay
mesh by an out-of-band bootstrap mechanism [20]. The peer
then selects a few hosts provided by the bootstrap service as
neighbors and also requests a few other nodes to add itself as

a neighbor. After the peer successfully joins the overlay mesh,
it can be selected to instantiate aggregation cell, distribution
cell or backup cell. When a peervi leaves the system without
pre-notice (i.e., crash/disconnection), the system first needs
to repair the overlay mesh and updates membership lists on
other live peers. The system can repair the partitioned mesh
by adding more overlay links at partitioned peers [20]. Ifvi

also provides a primary cellCi, the departure ofvi will trigger
dynamic failure recovery to repair the cell tree with a replica
of Ci. If vi only acts as a backup for a primary mixerCi, the
departurevi will causeCi to create a new backup cell.

E. Overlay Topology Adaptation

The goal of our overlay topology adaptation algorithm is
to minimize the overall overlay stretch for current MSSD
sessions under the overlay node degree constraint, which is
briefly described as follows: We define that a hostvj is
“stream-bounded” with the hostvi if the connection fromvi

to vj is used by at least one cell tree. We define the bounding
degree of the hostvj to vi as the number of the MSSD sessions
that include the connectionvi → vj as their tree links11.
Suppose each overlay nodevi can have at mostd out-bound
and in-bound neighbors. The overlay nodevi keeps track of
the MSSD sessions that have streams flowing into and out of
it. The hostvi maintains a set of hostsV = {v1, ...vm} that
have the largest bounding-degrees tovi. For example, let us
consider a hostvj that is not included in the neighbor set of
vi. If vj has a higher bounding degree than one of the existing
neighbors ofvi, andvj can accept an extra inbound neighbor,
vj is added into the out-bound neighbors ofvi if the out-
bound neighbor set ofvi is not full. Otherwise,vj replaces an
existing neighborvk of vi that has the lowest bounding degree
with vi. The hostvk then deletesvi from its inbound neighbor
set. The intuition behind our approach is that the overlay mesh
topology should be congruent with the topologies of current
cell trees to achieve minimum overlay stretch. In other words,
if vi → vj frequently appears in current cell trees,vi and vj

should be direct neighbors in the overlay mesh.

IV. EXPERIMENT EVALUATION

We have implemented a prototype of the BridgeNet system
and evaluated its performance on both simulation testbed and
PlanetLab Internet testbed [27] using a range of synthetic
stream workloads and real sensor data streams [12].

A. Simulation Results

In the simulation testbed, all BridgeNet algorithms are
fully implemented. Only underlying network is simulated
to enable easy control. The simulator performs packet-level,
discrete-event network simulation emulating packet routing
and fine-grained resource allocation in the overlay network.
The simulator uses the Internet topology generator Inet-3.0
[31] to generate a 5120 node power-law graph to represent
the IP network, and then randomly selects [200,1000] nodes

11The bounding degree can also be weighted by the bandwidth requirement
of each MSSD session for the connection fromvi to vj .
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Fig. 6. Dissemination delay compar-
ison under time-varying streams.
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Fig. 7. Link stress comparison under
time-varying streams.
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Fig. 8. Dissemination delay compar-
ison under real sensor data streams.
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Fig. 9. Link stress comparison under
real sensor data streams.
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Fig. 10. Performance comparison
under concurrent sessions.
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Fig. 11. Performance comparison
under different overlay sizes.
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Fig. 12. Performance comparison
under different stream burstiness.
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Fig. 13. Backup failure recovery
under system churn.

as overlay nodes12. Each overlay node is connected to [3,
5] other nodes as neighbors to form the overlay mesh. Our
simulator can simulate queueing delay at overlay nodes but
not the IP network queueing delay. The resource and per-
formance of overlay nodes and network links are uniformly
distributed within certain range to reflect system heterogeneity.
We compare our algorithm with several existing schemes:
(1) aggregation plus multicast (APM)approach uses existing
tree construction algorithm [20], [9] that does not perform
adaptations in response to stream workload changes; and
(2) BridgeNet-uncorrelatedalgorithm that performs cell tree
adaptations but does not consider correlations among different
stream arrival patterns.

We first compare the performance of different algorithms
using a synthetic time-varying stream workload. Each stream
source produces a fluctuating stream where its mean rate
periodically alternates between a high rate and a low rate.
Within each period, the inter-arrival time follows an ex-
ponential distribution with a mean set to the current rate.
We simulate different inter-stream correlations by randomly
assigning a start phase (i.e., high rate or low rate) to each
stream. Each simulation run lasts 3000 seconds. We start
two MSSD sessions in the system, each of which includes
50 stream sources and stream consumers whose locations
are randomly distributed in the system. Each simulation run
starts from a light workload where the high rate and low
rate are 20kps and 5kbps, respectively. At time 1000, we
increase the workload by raising the high/low rates to 100/50

12Because the simulator performs detailed packet-level emulations for
resource-intensive data stream dissemination, 1000-node stream overlay is
currently the largest-scale that can be executed within reasonable time on our
server host with 3G HZ CPU and 1G RAM.

kbps, and at time 2000, we decrease the workload by setting
the high/low rates to 30/15kbps. Figure 6 shows the mean
stream dissemination delay achieved by different algorithms
under the above workload. BridgeNet outperforms APM by
as much as 50% by employing adaptive cell trees. BridgeNet
performs better than its uncorrelated version, which shows
correlation-aware stream clustering is effective, especially
under heavy workload. Figure 7 shows the mean physical
link stress results. Each measurement is averaged over the
physical links used by the stream dissemination sessions. The
results show that BridgeNet does not increase physical link
stress by employing smaller trees, and the correlation-aware
stream clustering can also reduce link stress under heavy
workload condition. We then repeat the above experiments
with real sensor data streams [12], illustrated by Figure 8
and Figure 9. Each sensor data item carries a time-stamp,
along with a set of measurement values such as humidity,
temperature, light and voltage values. Each stream source
reproduces sensor readings with varying rates based on the
time-stamps recorded in the trace files. Again, the results show
that BridgeNet consistently achieves much better performance
than other alternatives because of its pattern-based adaptation
and optimization capabilities.

We then compare the performance of different algorithms
under increasing number of concurrent sessions, shown by
Figure 10. This experiment uses the synthetic dynamic streams
with the mean high/low rates set as 100/50kbps. The values
are measured when the system reaches its steady state. We
observe that BridgeNet can employ a small cell tree under
light workload condition to reduce the dissemination delay by
33% compared to APM. Under heavy workload, BridgeNet
can adaptively increase the cell tree to utilize more overlay
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system size 200 400 600 800 1000
algorithm overhead (MB) 0.7 1.6 2.4 3.3 3.9

stream data (MB) 238 478 718 957 1197

TABLE I

BRIDGENET ALGORITHM OVERHEAD.

nodes. We now test our algorithms under different system
sizes, illustrated by Figure 11. We gradually increase the
system size from 200 nodes to 1000 nodes. We start two
MSSD sessions on the system, each of which has 40 stream
sources and stream consumers whose locations are randomly
distributed. Given a constant node degree, larger system sizes
can have bigger overlay stretch due to an increasing number
of hops between every two nodes. We observe that BridgeNet
still consistently performs the best, especially under large-scale
overlay systems with more optimization opportunities. We now
evaluate the effect of stream burstiness on the performance of
our algorithms. We define a bursty ratio metricθ, 0 ≤ θ ≤ 1.
The high rate and low rate are calculated by(1 + θ)ri and
(1 − θ)ri, respectively. The larger the bursty ratio, the more
fluctuating the stream is. As expected, the correlation-based
complementary stream clustering algorithm is most effective
under highly bursty stream workloads.

We now evaluate the backup failure recovery schemes of
BridgeNet under system churn where a number of peers
dynamically leave or join the system, illustrated by Figure 13.
The algorithm “BridgeNet-backup(k)” means that we maintain
on averagek backup cells for each primary. The system ran-
domly selects a number of departure nodes every 20 seconds
according to a specified churn rate. During each 3000-second
simulation run, we start from a low-churning system with10%
churn rateδ (i.e., 10% of total system nodes randomly leave
the system13, then increase the churn rate to20% at time
1000, and further increase the churn rate to30% of all nodes
at time 2000. The system repairs overlay mesh partition by
randomly adding neighbors to the peers with few neighbors
left. The Y-axis of Figure 13 shows the accumulated number of
failures that cannot be recovered by the maintained backups.
We observe that the system can withstand high system churn
by just maintaining a few number of backup cells.

Finally, Table I shows some algorithm overhead measure-
ments of the BridgeNet system under different sizes of overlay
networks, which mainly includes overlay neighbor monitoring
overhead, cell tree adaptation overhead, and backup mainte-
nance overhead. BridgeNet generally has very low overhead
since it only requires localized information to perform fully
distributed adaptation and optimization algorithms.

B. Planetlab Results

To evaluate the feasibility and performance of our approach
under real Internet environment, we have implemented an
initial prototype of the BridgeNet system and tested it on
the Planetlab Internet testbed [27]. The BridgeNet prototype
is a multi-threaded distributed software system written in
about 20K lines of Java code. Our experiments used about

13Some nodes will be dynamically added back to the system to keep the
number of live nodes in the system at a constant level of(1− δ) ·N .
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50 PlanetLab hosts that spread across US. In the experiments,
half of nodes are configured as stream sources and the other
half of nodes are configured as stream consumers. Figure 14
shows the cumulative distribution of data dissemination time
between all pairs of stream sources and stream consumers.
The dissemination time measured on PlanetLab includes the
stream processing and queueing delays at both overlay hosts
and Internet connections. In Figure 14, we observe that the
cumulative distribution of data dissemination time of the
BridgeNet approach stays left of APM distribution, which
means a larger proportion of data dissemination time is lower
than that of the APM’s dissemination time. We also measured
the distributed cell tree adaptation time on the PlanetLab,
shown by Figure 15. We first measured the time of migrating
an internal cell tree node from one Planetlab host to another
host. The migration time includes the time to select the
best neighbor as the new hosting place for the cell, and the
time to modify the distributed cell tree structure using a set
of tree update messages. For example, all the children of
the current cell will be notified with its new location and
send confirmation messages back to the current cell when
they complete the update. Thus, the migration time grows
with the children number of the migrated cell. Figure 15
shows the mean and standard deviation time for migrating
an internal cell with 2 to 8 children cells from one host to a
neighbor host in the overlay network. The splitting operation
is similar to the migration operation with an extra time of
computing the stream partitions and sending more cell tree
update messages. Generally, the cell tree adaptation time is
about tens to hundreds of milli-seconds, which is acceptable
by long-lived stream dissemination services.

V. RELATED WORK

Our work is related to previous content-based pub-
lish/subscription (pub/sub) systems such as SIENA [7],
Gryphon [3], Sieve [15], and Kyra [6]. Recent work has ex-
plored the problem of providing peer-to-peer pub/sub services
(e.g., [36]). Other recent work has extended pub/sub sys-
tems with composite event subscriptions [28], [25], [10]. The
pub/sub systems mostly concern about matching published
information with subscriptions using selection predicates, and
often deal with discrete data items such as messages and
events. The Bistro [11] system addresses the problem of
efficient data (file) collection by calculating an optimal data
transfer schedule. In contrast, our work focuses on the problem
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of efficiently aggregating and disseminating long-lived, time-
varying data streams from multiple given data sources that
match users’ interest. Those data sources can be discovered
using previous matching algorithms.

Featured by flexibility and easy deployment, various overlay
networks have been proposed for content distributions, such as
resilient routing overlay [1], multicast overlays (e.g., [20], [9],
[4], [24]) and reliable/high bandwidth stream overlays [30],
[22], [8]. A flurry of research work (e.g., [32], [34], [13])
has devoted to studying the problem of constructing efficient
overlay topologies. Zhuang et al. studied the failure detection
problem in the overlay networks [37]. BridgeNet is orthogonal
to the above work, and can benefit from previous schemes to
provide wide-area MSSD services.

Distributed data stream processing has recently drawn much
research attention [2], [33], [21], [19]. However, most of them
focuses on distributed query processing instead of data stream
dissemination. Some recent work [29], [26], [16] has addressed
the stream dissemination problem, which mostly addresses
efficient content-based filtering for distributing single-source
streams. In contrast, our work focuses on the problem ofmulti-
source stream dissemination and providesstream-pattern-
based adaptationsto both dissemination trees and underlying
overlay topology.

VI. CONCLUSION

In this paper, we have presented BridgeNet, a novel self-
adaptive multi-source data stream dissemination overlay sys-
tem. The design of the BridgeNet system centers around the
two unique features of data stream dissemination: (1) data
streams aretime-varying, where stream sources can produce
data items at fluctuating rates; and (2) data streams arelong-
lived, which allows the system to collect meaningful stream
arrival patterns for efficient and stable adaptations. To the
best of our knowledge, this is the first work that studied
adaptive dissemination of time-varying data streams collected
from multiple distributed locations. Specifically, this paper
makes the following contributions: (1) a new distributed cell
tree structure that can adaptively contract or expand itself
in response to workload changes; (2) stream-pattern-based
adaptation algorithms for both cell trees and overlay topology;
(3) light-weight backup schemes to achieve failure-resilient
stream dissemination. We have implemented a prototype of
the BridgeNet system that is evaluated using both extensive
simulation testbed and PlanetLab wide-area network testbed.
The experimental results based on both synthetic workloads
and real sensor data streams show that BridgeNet can always
achieve better performance than existing schemes under time-
varying stream workloads. The prototype implementation on
the PlanetLab shows the feasibility of our approach where the
cell tree adaptations can be quickly performed in wide-area
networks.
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