
Visual QoS Programming Environment for Ubiquitous
Multimedia Services

Xiaohui Gu, Duangdao Wichadakul, Klara Narhstedt

Computer Science Department
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801, USA
{xgu ,wichadak, klara}@cs.uiuc.edu

ABSTRACT
The provision of distributed multimedia services is becoming
mobile and ubiquitous. Different multimedia services require
application-specific Quality of Service (QoS). In this paper, we
present QoSTalk, a unified component-based programming
environment that allows application developers to specify
different application-specific QoS requirements easily. In
QoSTalk, we adopt a hierarchical approach to model application
configuration graphs for different distributed multimedia services.
We design and implement the XML-based Hierarchical QoS
Markup Language, called HQML, to describe the hierarchical
configuration graph as well as other application-specific QoS
requirements and policies. QoSTalk promotes the separation of
concerns in developing QoS-aware ubiquitous multimedia
applications and thus enables easy programming of QoS-aware
applications, running on top of a unified QoS-aware middleware
framework. We have prototyped the QoSTalk in Java and
CORBA. Our case studies with several multimedia applications
show that QoSTalk effectively fills the gap for application
developers between the very general facilities provided by the
QoS-aware middleware and different kinds of distributed
multimedia applications.

1. INTRODUCTION

In recent years, two major types of QoS-aware middleware
systems have evolved: (1) Reservation-based Systems, such as
Qualman [1], get the QoS parameters in the form of application's
resource requirements, reserve the specified resources, and during
runtime the system's mechanisms and policies enforce the delivery
of requested QoS. (2) Adaptation-based Systems, such as Agilos
[2], get the QoS parameters in the form of bounds on resource
utilization, resource-specific degradation rules and user decisions,
adapting resource allocations according to application specified
rules. However, both of them require application-specific QoS
parameters such as frame rate, tracking precision or adaptation
rules to be provided by application developers. Recently
developed reconfigurable component-based QoS-aware
middleware systems, such as 2KQ [3], require also application-
specific configuration graphs from application developer before
entering the runtime instantiation phase. Based on these
observations, a new critical challenge has emerged to provide a
unified QoS-aware programming environment as well as runtime
instantiation framework. Solutions for this new challenge are

needed to fill the gap between the application-neutral middleware
services and the input of application-specific QoS requirements.

Several recent works have addressed the problems of QoS
specifications and programming environment from different
directions. In [4], a service contract- based API is designed to
formalize the end-to-end QoS requirements of the user and the
potential degree of service commitment of the provider. A
contract is a C data structure including all the conceived clauses.
Although it is possible to mix QoS-related code or specification
with the functional code, it is highly desirable to separate the non-
functional requirements from the functional requirements so that
the two parts can be developed and maintained independently.
QML (QoS Modeling Language) [5] is an independent QoS
specification language for distributed object systems. It allows
users to specify non-functional aspects of services separate from
the interface definition. However, QML does not consider the
resource-level QoS specifications and the configuration graphs for
the reconfigurable multimedia applications. The QuO [6,7] project
is the closest in approach to our own work. It provides a set of
specialized languages to specify different aspects of QoS support
in their framework based on the aspect-oriented programming.
However, different from QuO, we use XML as our QoS
specification language to make our framework most applicable.
Moreover, the QoS specifications are considered in a broader
context, namely the ubiquitous computing environment.

In this paper, we present QoSTalk, a unified QoS programming
environment, which allows application developers to specify,
process and store different application-specific QoS requirements
easily and efficiently. QoSTalk enables easy programming of
QoS-aware multimedia applications, running on top of a unified
QoS-aware middleware framework. In the design and
implementation of QoSTalk, we assume that applications are
component-based. We have implemented a prototype of QoSTalk
in Java and CORBA. To evaluate the effectiveness of QoSTalk,
we performed case studies with several distributed multimedia
applications, such as ubiquitous video on demand and video
conferencing. Our case studies show that QoSTalk greatly
simplifies the design and implementation of QoS-aware
multimedia applications.

The rest of the paper is organized as follows. Section 2 presents
the overall architecture of QoSTalk. Section 3 describes the Visual
Hierarchical QoS Editor. Section 4 presents the design of the
XML-based QoS specification language, called HQML. Section 5
presents the experimental results from the QoSTalk prototype.
Section 6 concludes this paper.

2. QoSTalk ARCHITECTURE

The overall architecture of QoSTalk is shown in Figure 1. The
major objective of the architecture is to provide a unified
programming framework for application developers to input all
kinds of application-specific QoS requirements easily. The
contribution of QoSTalk is twofold: first, it makes QoS-unaware
applications become QoS-aware by instrumenting the code and
profiling application-specific QoS requirements; Second, it makes
traditional QoS-aware applications become lightweight and more
efficient by delegating all QoS-aware services to the middleware,
namely the QoS proxy.

The application developer first uses the Visual Hierarchical QoS
Editor to draw all possible configurations for a particular
application using visual tools and inputs all kinds of application-
specific QoS requirements and policies via dialogs. Second, the
developer uses our Consistency Check tools [8] to “debug” the
input configuration graph. If there is any inconsistency in the
input configuration graph, the error messages are returned to the
application developer in the Visual Hierarchical QoS Editor.
Otherwise, the legal configuration graph is passed to the QoS
Complier [9] to probe the resource requirements and establish the
mapping between application QoS parameters and resource
requirements automatically. In the fourth step, the legal
configuration graph with complete QoS specifications is passed to
the HQML Generator [8]. The HQML Generator “traverses” the
complete configuration graph to generate the HQML file, namely
the application-specific QoS profile, automatically. Finally, the
complete HQML file is saved into the QoS Profile Database.

During runtime, the QoS Proxy on the client or server host
acquires the necessary application-specific QoS profile from the
QoS Profile Database. It chooses the most suitable QoS profile
according to the user requirements and the current end-to-end
resource availability. The HQML Translator translates the chosen
QoS profile into desired data structures and feeds them into
different parts of the runtime QoS proxy such as the Configurator
and Adaptor. Clients of a ubiquitous multimedia service receive
satisfactory QoS automatically and with low setup overhead,
within their end-to-end resource availability constraints.

3. VISUAL HIERARCHICAL QoS EDITOR
The Visual Hierarchical QoS Editor presents a set of visual tools
and dialogs for application developers. It allows the developer to
depict all distributed components and their relations to create a set
of distinct configurations for a particular application. For
example, a distributed Video-On-Demand multimedia application
may include four distributed components: (1) MPEGII Video
Server (2) MPEGII to Bitmap Transcoder (3) MPEGII Player and
(4) Bitmap Player. One possible configuration is a MPEGII Video
Server plus a MPEGII Player. The other possible configuration is
a MPEGII Video Server, a MPEGII to Bitmap Transcoder
gateway and a Bitmap Player. Different configurations of the same
application provide different QoS levels or even the same QoS
levels but have different resource requirements.

The Visual QoS Editor is based on a hierarchical approach. There
are two reasons driving us to use the hierarchical design. First, the
hierarchical design is more scalable. A complex distributed
component-based application may include tens of components. It
is difficult to draw all of them in a single page. Second, the
hierarchical design makes the relationships between different
components much more clear. There are essentially three
component levels in the configuration graph:

• Atomic components. An atomic component only contains
one basic multimedia function such as a MPEGII Decoder.

• Composite components. Each composite component
consists of a set of atomic components. We assume that all
atomic components within one composite component are
instantiated in one host machine during runtime.

• Composite component groups. They represent different
computer clusters: (1) Server Cluster, (2) Gateway Cluster,
(3) Client Cluster, and (4) Peer Cluster. Each composite
component group may include several same type composite
components.

We have also designed three different links to represent three
different relations between components:

Figure 1: The QoS Programming Environment Architecture

Profile

 QoS

 Profile

 Database

Illegal
Configuration

Graphs

 QoS

Programming Environment
User QoS Request Profile

QoS

Runtime Environment

Resource Broker

Resource Broker

OS and Network Layer

 HQML Translator

Distributed Multimedia Applications

Configurator Adaptor

Resource Coordinator

Resource Broker Resource Broker

QoS Proxy Configuration Graphs

Visual Hierarchical QoS Editor

 Consistency Check

QoS Compiler

HQML Generator

Legal Configurations

Complete Configurations

• Fixed links. A fixed link defines a wired data
communication channel between two components. It cannot
be interrupted or moved during runtime. It is represented by
the solid line in the configuration graph.

• Mobile host links. A mobile host link defines a wireless
communication channel between two components. It is used
to represent host mobility, which means the end host
machine could move within certain range during runtime. It
is represented by the dashed line.

• Mobile user links. A mobile user link is defined to specify
the user mobility, which means the user could move from
one machine to another during runtime. In other words, when
the user moves from the old machine to a new machine
during the runtime of an application, such as the Video On
Demand, the old link from the server to the old machine is
torn down. A new connection from the server to the new
machine is established and the application session is
recovered and resumed automatically from the interruption
point. It is represented by the dotted line.

All of these links could be one-way communication channels or
two-way communication channels. Figure 2 illustrates our three-
level hierarchical design.

4. HQML- HIERARCHICAL QoS MARKUP
LANGUAGE

In order to make our programming framework most applicable
and also facilitate web applications to utilize QoS-aware
middleware services, we design and implement a Hierarchical
QoS Markup Language (HQML) as our QoS specification
language. HQML uses the standard XML mechanism for
definitions. Thus, we could utilize the existing XML database
technique to build the QoS Profile database. Figure 3 gives an
example of QoS specifications in HQML for a distributed mobile
video on demand application.

HQML uses intuitive qualitative values such as high, low,
average, for the user-level QoS specifications. HQML provides
many constructs for application-level QoS specifications. An
HQML file has the same hierarchy as its corresponding
hierarchical configuration graph. For example, the specifications
between the “<Server>” and “</Server>” tags are the QoS

requirements of one composite server component. As discussed in
section 2, the framework shows that during the runtime
instantiation phase, the HQML translator parses the chosen
HQML file to generate the configuration graph and feeds the
configuration graph into the Configurator of the QoS proxy. The
adaptation rules tell the QoS Proxy how to gracefully adapt the
application with minimum user level QoS violations during the
resource fluctuation period (e.g., “Add compression when the cpu
load is low and network load is high”). They are retrieved from
the HQML file and sent to the QoS proxy's Adaptor. The
persistent states such as the “frame number” are parsed and sent to
the QoS proxy's Persistent State Manager. The critical QoS
parameter represents the most important QoS parameter, which is
protected by degrading other QoS parameters when resource
availabilities change.

HQML also provides some mechanisms for resource level QoS
specifications. During runtime, the QoS proxy chooses the most
suitable configuration according to the best match between these
resource level QoS specifications and the current end-to-end
resource availability. The most suitable configuration is the one
that is affordable by the current end-to-end resource availability
and with the highest user-level QoS.

Server Cluster Client Cluster

Client 1

Server1

Server 2

C1 C2

C3

C4

C5

C6

C7

Figure 2: A generic three-level configuration graph

<APP name = “Mobile VoD” >
 <Configuration id = “101” >
 <QoSLevel> average </QoSLevel>
 <CriticalQoSPara>FrameRate </CriticalQoSPara>
 <Range unit = “fps”>
 <UpperBound> 30 </UpperBound>
 </LowerBound> 15 </LowerBound>
 <ServerCluster>
 <Server >
 <Name> Video Server </Name>
 <Hardware> Sun Ultra 60 </Hardware>
 <Software> Solaris 5.0 </Software>
 <CPU unit = “percentage”> 30 </CPU>
 <Memory unit = “KB”> 8000 </Memory>
 <Disk unit = “MB” > 10 </Disk>
 <Bandwidth unit = “MB”> 5 </Bandwidth>
 <Atomic name = “MSP Video Server”>
 <AdaptationRules> … </AdaptationRules>
 …
 </Atomic>
 </Server>
 </ServerCluster>
 <ClientCluster>
 …
 </ClientCluster>
 <Link type = “MobileUserLink”>
 <PersistentSate> FrameNumber </PersistentState>
 </Link>
 </Configuration>
</App>

Figure 3: An Example of QoS Specifications in HQML

5. EXPERIMENTAL RESULTS
We have implemented a prototype of QoSTalk. The Visual
Hierarchical QoS Editor is implemented in Java Swing. The
HQML Translator is also implemented in Java. Thus, our
implementation is platform independent. QoSProxies such as the
Configurator, Adaptor, and Resource Brokers are implemented as
CORBA objects. The multimedia service components are also
implemented as CORBA objects. Our experiments with several
multimedia applications such as the Video Conferencing and
Distributed Video On Demand show the soundness of QoSTalk.
Figure 4 shows one screenshot of the Visual Hierarchical QoS
Editor. Figure 5 presents the QoS setup times for different
multimedia applications. The QoS setup time is divided into three
main portions: the HQML translation time, the dynamic
downloading time, and the instantiation time. The largest time
used during the QoS setup phase is the dynamic downloading time
for all applications.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present QoSTalk, a unified QoS programming
environment for ubiquitous multimedia applications. We make
two fundamental contributions: (a) We design and implement a
Visual Hierarchical QoS Editor, which allows application
developers to draw all candidate configurations using visual tools
and input application-specific QoS requirements via dialogs. (b)
We design and implement an XML-based Hierarchical QoS
Markup Language (HQML) for QoS specifications at different
layers. In the future, we will investigate new probabilistic and
predictive techniques for QoS profiling and specification.

7. ACKNOWLEGEMENTS

This research is supported by the National Science Foundation
Career Grant under contract number NSF CCR 96-23867, NSF
CISE Infrastructure grant under contract number NSF EIA 99-
72884, and NASA grant under contract number NASA NAG 2-
1406.

8. REFERENCES
[1] K. Nahrstedt, H. Chu, and S. Narayan. QoS-Aware Resource

Management for Distributed Multi-media Applications,
Journal on High-Speed Networking, 8, 1998

[2] B. Li, and K. Nahrstedt. A control-based middleware
framework for quality of service adaptation, IEEE Journal on
Selected Areas in Communication, Sept. 1999.

[3] K. Nahrstedt, Duangdao Wichadakul, and Dongyan Xu.
Distributed QoS Compilation and Runtime Instantiation,
Proceedings of IEEE/IFIP International Workshop on QoS
2000 (IWQoS2000), June 2000.

[4] Andrew T.Campbell. A Quality of Service Architecture, PhD
Thesis, Computing Department, Lancaster University, Jan.
1996.

[5] S.Frolund, and J.Koistinen. QML: A Language for Quality of
Service Specification, Technical Report HPL-98-10, Feb.
1998.

[6] J. P. Loyall,R. E. Schantz, J. A. Zinky, and D. E. Bakken.
Specifying and measuring Quality of Service in Distributed
Object Systems, Proceedings of the first IEEE International
Symposium on Object-Oriented Real-tim Distributed
Computing (ISORC’98), April, 1998, Japan.

[7] P. Pal, J. Loyall, R. Schantz, J. Zinky, R. Shapiro, and J.
Megquier. Using QDL to specify QoS Aware Distributed
(QuO) Application Configuration. Proceedings of the third
IEEE International Symposium on Object-Oriented Real-tim
Distributed Computing (ISORC’2000), March, 2000.

[8] X. Gu and K. Nahrstedt. Visual Quality of Service
Specification for Distributed Heterogeneous Systems,
Technique Report No. UIUC DCS-R-2000-2190, Computer
Science Department, University of Illinois at Urbana –
Champaign, Nov. 2000.

[9] D. Wichadakul and K. Nahrstedt. Distributed QoS Compiler,
Technique Report No. UIUC DCS-R-2000-2201, Computer
Science Department, University of Illinois at Urbana –
Champaign, Feb. 2001.

Figure 5: QoS setup times for different multimedia applications

Figure 4: Screenshot of the Visual QoS Editor

