
A Scalable QoS-Aware Service Aggregation Model for
Peer-to-Peer Computing Grids

Xiaohui Gu, Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Email:{xgu},{klara}@ cs.uiuc.edu

In Proceedings of IEEE International Symposium on High Performance Distributed Computing (HPDC 2002), Edinburgh, Scotland.

Abstract

Peer-to-peer (P2P) computing grids consist of peer
nodes that communicate directly among themselves
through wide-area networks and can act as both clients
and servers. These systems have drawn much research
attention since they promote Internet-scale resource and
service sharing without any administration cost or cen-
tralized infrastructure support. However, aggregating
different application services into a high-performance
distributed application delivery in such systems is chal-
lenging due to the presence of dynamic performance in-
formation, arbitrary peer arrivals/departures, and sys-
tems’ scalability requirement. In this paper, we propose
a scalable QoS-aware service aggregation model to ad-
dress the challenges. The model includes two tiers: (1)
on-demand service composition tier, which is respon-
sible for choosing and composing different application
services into a service path satisfying the user’s quality
requirements; and (2) dynamic peer selection tier, which
decides the specific peers where the chosen services are
actually instantiated based on the dynamic, composite
and distributed performance information. The model
is designed and implemented in a fully distributed and
self-organizing fashion. Finally, we show that the pro-
posed model and algorithms can achieve better perfor-
mance than common heuristic algorithms using large-
scale simulations.

1 Introduction

In peer-to-peer (P2P) systems, computers, which are
called “peers”, communicate directly among themselves
and can act as both clients and servers. Unlike conven-
tional client-server systems, P2P systems are distributed
systems without any centralized infrastructure or hierar-

chical organization. Peers voluntarily participate in uti-
lizing or contributing resources and services in the sys-
tem. Recently, P2P systems have drawn much research
attention with the popularity of P2P file sharing systems
such as Gnutella [1] and Napster [2]. P2P systems are
attractive since they promoteresource sharingsuch as
the sharing of processing cycles and disk storage,with-
out any administration cost or centralized infrastructure
support. The previous research work on P2P systems
has mainly focused on providing scalable P2P discov-
ery services [7, 20, 16], which enabledata and resource
sharing, in P2P systems. However, few have addressed
the service sharingproblem which is important for the
user of P2P systems to utilize a wealth of application ser-
vices provided by other peers. Hence, we propose a scal-
able service aggregation model for P2P systems to au-
tomatically aggregate services into a high performance
distributed application delivery with quality-of-service
(QoS) guarantees to fulfill the user’s requirements.

The problem of service instantiation and/or composi-
tion has been addressed by much research work under
different context [8, 9, 22, 5]. However, most of the
proposed approaches present the following major lim-
itations when applying to P2P systems. First, they lack
generic QoS support for coordinating arbitrary interac-
tions between service instances. Second, they do not
provide dynamic peer selection scheme since all ser-
vices are assumed to be provided by dedicated servers.
Third, they often assume a global view of the entire sys-
tem in terms of performance information, which, how-
ever, is impossible in P2P systems due to the scalabil-
ity requirement. Fourth, they do not consider the dy-
namic topological variation caused by arbitrary peer ar-
rivals/departures in P2P systems.

In this paper, we address the above challenges by
proposing ascalable QoS-aware service aggregation
model, which is designed and implemented in a fully
distributed and self-organizing fashion. The model in-

1



Two-hop service path

Three-hop service path


(b)
(a)


Peer host
 Service component


service

component


A


 service

component


B


Q
in
 Q
out
 Q
in


Resource requirements

R = 
f 
(Q
in
, Q
out
)


Bandwidth

requirement b
A,B


satisfy


Figure 1. Illustration of the application service model for P2P systems.

cludes two tiers: (1)on-demand service composition;
and (2)dynamic peer selection. The former is respon-
sible for choosing suitable service instances, discovered
in the current P2P system, to compose a distributed
application delivery satisfying both the functional and
non-functional (i.e., QoS) requirements of the user. To
provide QoS support, we propose a quality consistency
check algorithm to guarantee the consistency of qual-
ity parameters between any two interacting service in-
stances while meeting the user’s end-to-end QoS re-
quirements. However, due to the inherentredundancy
property of P2P systems, a service instance can have
multiple replications, which are provided by different
peers. Hence, we employ thedynamic peer selection
tier to decide the specific peers where the service in-
stances are actually executed. The selection decisions
are made based on the dynamic and hop-by-hop1 perfor-
mance information such as system load, network band-
width and delay. For providing highly available dis-
tributed applications in P2P systems, we also need to
consider the topological variation, caused by arbitrary
peer arrivals/departures, when we select peers for instan-
tiating services. Hence, we use thepeer’s uptimeas one
of peer selection metrics, which is defined as the dura-
tion that the peer has remained connected to the P2P sys-
tem. The up-to-date performance information is main-
tained at each peer host through a controlled, benefit-
based probing method. The major advantages achieved
by thedynamic peer selectionare: (1) improved service
request success rate; (2) improved service availability;
(3) load balance in heterogenous environments; and (4)
improved tolerance to the topological variation of P2P
systems.

The rest of the paper is organized as follows. We
introduce the system model in Section 2. Section 3

1The hop here refers to the application-level (e.g., TCP or UDP)
connection between two peers.

presents the design and algorithms of the scalable QoS-
aware service aggregation model, followed by the ex-
tensive simulation results, presented in Section 4. We
discuss related work in Section 5. Finally, we conclude
this paper in Section 6.

2 System Model

This section describes the system model. First, we
present a component-based application service model
to characterize the quality sensitive distributed applica-
tions such as thevideo-on-demandandcontent retrieval
applications. Then, we introduce a network model for
Internet-scale P2P systems. Finally, we present the
overview of the QoS-aware service aggregation model.

2.1 QoS-Aware Application Service Model

We assume that each distributed application deliv-
ery consists of a list of composable service components,
which are connected into aservice path. Each service
component accepts input data with a QoS levelQin

and generates output with a QoS levelQout, both of
which are vectors of application-level QoS parameters.
The application-level QoS parameters can be data for-
mat (e.g., MPEG, JPEG) , frame rate (e.g., [0,20]fps),
and others. In order to process input and generate out-
put, a specific amount of resourcesR is required, which
is a vector of requiredend-systemresources (e.g., cpu,
memory). The network resource requirements, such as
bandwidthbi,j , are associated with edges between two
communicating componentsi andj. Figure 1(a) illus-
trates such a characterization in terms of QoS param-
eters and resources. Formally, we define the vectors
Qin, Qout, andR as follows:Qin = [qin

1 , qin
2 , ..., qin

n ],
Qout = [qout

1 , qout
2 , ..., qout

n ], R = [r1, r2, ..., rm]. Intu-
itively, if a component A is connected to a component B,

2



the output QoS of A (Qout
A ) must “match” the input QoS

requirements of component B (Qin
B ). In order to for-

mally describe thisQoS consistencyrequirements, we
define an inter-component relation “¹”, called “satisfy”,
as follows:Qout

A ¹ Qin
B if and only if

∀i, 1 ≤ i ≤ Dim(Qin
B ), ∃j, 1 ≤ j ≤ Dim(Qout

A ),
qout
Aj = qin

Bi, if qin
Bi is a single value;

qout
Aj ⊆ qin

Bi, if qin
Bi is a range value. (1)

The “Dim(Q)” represents the dimension of the vector
“Q”. The single valueQoS parameters include data for-
mat, resolution, and others. Therange valueQoS pa-
rameters include frame rate ([10fps,30fps]) and others.
If the application delivery involvesn peers except the
peer requesting the application, then such an application
delivery is defined as ann hop service aggregation, il-
lustrated in Figure 1 (b). For example, the content re-
trieval application represents a single hop service ag-
gregation. Note that the hop count here represents the
number of application-level connections. Each hop in
the service aggregation may include many network-level
hops depending on the network distance between two
peers.

2.2 Network Model

According to [17], peers are highly heterogeneous
and also reluctant to report their performance informa-
tion to other peers or deliberately misreport the informa-
tion. Hence, in order to provide efficient QoS support,
we assume that each peer proactively measures the per-
formance information of other peers through probing. In
order to achieve scalability and avoid flooding of prob-
ing messages, we assume that each peer can only probe
a small number of “peer neighbors” whose resource in-
formation is the most important. To be specific, if peer B
provides services that peer A needs, B is regarded as A’s
neighbor. If the service that peer B provides is theith
hop from the reverse direction of the service aggregation
flow, then B is defined as A’si-hop neighbor. Moreover,
if the service that peer B provides is part of an applica-
tion that A needs, B is defined as the A’s “direct neigh-
bor”. Otherwise, B is called “indirect neighbor”. For ex-
ample, in Figure 2,B1, B2, andB3 are A’s 1-hopdirect
neighbors.C1 andD1 are A’s 2-hop and 3-hopdirect
neighbors, respectively.C1 andD1 areB3’s 1-hop and
2-hop indirect neighbors, respectively. Such a relation-
ship is dynamically decided by ourneighbor resolution
protocol introduced later in Section 3.3. We defineM
as the maximum number of peers whose performance
information is maintained by any peer. Under such a
constraint, any peer first probes its 1-hop direct neigh-
bors, then 1-hop indirect neighbors, then 2-hop direct
neighbors and so on.

A


B
2


B
1


B
3


C
1


D
1


Peer

Service


Component

Service


Aggregation

Network


Connection

Probing


Figure 2. Illustration of the network model
for P2P systems.

2.3 Service Aggregation Model

The service aggregation model dynamically com-
poses and delivers high performance distributed appli-
cations for the user of P2P systems by exploiting the
systems’ inherentredundancyproperty, which is repre-
sented by the fact that: (1) the same application ser-
vice (e.g., video player) can have multiple service in-
stances (e.g., real player, windows media player), each
of which has differentQin and Qout parameters; and
(2) the same service instance (e.g., real player) can have
multiple copies on different physical peer hosts (e.g.,
boston.cs.uiuc.edu, spica.hpl.hp.com). Hence, our solu-
tion tackles two key problems for aggregating services
at setup time of each application session: (1) how to
choose service instances with proper quality parameters
Qin andQout according to the user’s end-to-end QoS
requirements2; and (2) how to select proper peers to ex-
ecute the chosen service instances, according to the dy-
namic performance information of all candidate peers.
To address the above problems, the service aggregation
model includes two cooperating tiers: (1)on-demand
service composition; and (2) dynamic peer selection.
Upon receiving a user request, theon-demand service
compositiontier first chooses among those candidate
service instances with differentQin andQout parame-
ters, to establish a QoS consistent (equation(1), Section
2.1) service path satisfying the user’s end-to-end QoS
requirements. Next, thedynamic peer selectiontier is
responsible for selecting proper peers to execute the ser-
vice instances chosen by the first tier, according to the
dynamic and distributed performance information. Such
a service aggregation model would be beneficial to a
range of quality-sensitive distributed applications in P2P
systems such as thecontent retrieval, and Internet-based
multimedia streamingapplications.

2In this paper, we will not deal with the copy right problem. We as-
sume that the service aggregation model always chooses service com-
ponents that the user is authorized to use.

3



3 Design and Algorithms

This section describes the design details of theQoS-
aware service aggregation(QSA) model and algorithms.
It enables high performance distributed application de-
livery in P2P systems by meeting the following chal-
lenges: (1)Decentralization. The solution must be
fully distributed and only involve local computation
based on local information; (2)Scalability. The solution
must scale well in the presence of large number of peer
nodes; (3)Efficiency. The solution should be able to uti-
lize resource pools provided by P2P systems efficiently
so that it can admit as many user requests as possible;
and (4)Load balance. Although each peer makes its
own decisions based on only local information, the so-
lution should achieve the desired global properties such
as load balance in P2P systems. We first state a num-
ber of key assumptions made by the service aggrega-
tion model and prove that those assumptions are valid in
practice. We then describe the design details for theon-
demand service compositionanddynamic peer selection
tiers, respectively.

3.1 Assumptions

First, we assume that application-level QoS specifi-
cations of each service instance are available and co-
located with the service instance. Several programming
environment and specification languages have been pro-
posed to allow application developers to provide such
QoS specifications [18, 15, 11]. Second, we assume that
there exists a translator that can map the application-
level QoS specifications into the resource requirements
(i.e., CPU, memory, network bandwidth/latency, etc.).
Such a translation procedure can be performed based
on two major approaches: (1) analytical translation; and
(2) offline/online probing services, which have been ad-
dressed by a wealth of research work [3, 13, 21]. Third,
this paper only deals with the initial setup phase for de-
livering distributed applications in P2P systems, the fail-
ure detection and recovery during a session are beyond
the scope of this paper and have been addressed by some
research work under different context [4].

3.2 On-Demand Service Composition

We now present theon-demand service composition
tier, which is represented by theservice composer. In
order to compose a quality consistent service path satis-
fying the user’s end-to-end QoS requirements, theser-
vice composeron the user’s local host needs to execute
the following major protocol steps:

• Acquire and translate the user request.The user
can directly name the requested distributed appli-

cation, such asvideo-on-demand. Then the request
is mapped into a list of application services, called
abstract service path, which is created by the QoS
compiler [14] or other translators. Alternatively,
the user can directly define theabstract service
path (e.g., video server→ Chinese2English trans-
lator→ image enhancement→ video player). The
user can also specify his QoS requirements using
application-specific QoS parameters such as frame
rate, response time.

• Discover service instances.Once the user request
is acquired, the P2P lookup protocol, such as Chord
[20] or CAN [16], is invoked to retrieve the lo-
cations (i.e., IP addresses) and QoS specifications
(Qin, Qout, R) of all candidate service instances,
according to theabstract service path.

• Compose a QoS consistent shortest service path.
Due to the inherentredundancyproperty of P2P
systems, multiple service instances, with different
Qin andQout parameters, may be returned for a re-
quired application service. Thus, theservice com-
poserestablishes a QoS consistent shortest service
path by using the information acquired in the pre-
vious step, according to the user’s end-to-end QoS
requirements and the resource requirements of each
possible service path. We will discuss this step with
more details later in this section.

• Deliver the service path to thedynamic peer se-
lection tier. After the third step, a QoS consistent
shortest service path is generated and then deliv-
ered to thedynamic peer selectiontier.

Among the above four steps, the third one forms the
key part of theon-demand service compositiontier. It
tackles the following two problems: (1) The composed
service path must be QoS consistent which means that
the Qin of a service component must be “satisfied”
(equ. 1, Section 2.1) by theQout of its predecessor;
(2) If multiple QoS consistent service paths exist, the
service composershould choose the one which has the
minimum aggregated resource requirements so that
the overall workload of a P2P system is minimized.
We propose the algorithmQCS, the acronym of QoS
consistent and shortest, to address the problems. It
includes the following major operations, illustrated in
Figure 3: (1) start from the (data) sink service, check the
QoS consistency between the current examined service
instance and all of its predecessors on the service path.
If the Qout of the predecessor satisfies theQin of the
current examined service, then add a directed edge
from the current examined service to the predecessor
in the reverse direction of service aggregation flow. We
assume that theQout of the sink service is set as the

4



0


1


2


3


4


5


6


7


8


9


10


11


12


sink

service


service 2

service 3


source

service


0


1


2


3


4


5


6


7


8


9


10


11


12


sink

service


service 2

service 3


source service


(R
1
, b
1,0
)


0


1


2


3


4


5


6


7


8


9


10


11


12


sink

service


service 2

service 3


source service


0
 2
 7
 11


QoS-consistent, resource-

shortest serivce path


(a) Service instances for all

required services


(b) Add edges between two QoS-

consistent service instances
 (c) Find the shortest service path


service

instance


chosen service

instance


The service instance group

for the same service


service

aggregation flow


Figure 3. Illustration of on-demand service composition.

user’s QoS requirements; (2) define the cost value on
each edge from A to B as a resource tuple (RB , bB,A),
whereRB = [rB

1 , rB
2 , ..., rB

m] represents the end-system
resource requirements of node B andbB,A specifies the
network bandwidth requirements from B to A3; and
(3) find the shortest path from the data sink node to
the data source node using the Dijkstra’s algorithm. In
order to apply the Dijkstra’s algorithm, we define the
comparison of any two resource tuples as follows:

DEFINITION 3.1 Given two tuples (RB , bB,A) and
(RD, bD,C), they can be compared in the following way:

m∑

i=1

wi · rB
i − rD

i

rmax
i

+ wm+1 · bB,A − bD,C

bmax
> 0

⇒ (RB , bB,A) > (RD, bD,C) (2)

wherermax
i , bmax represent the maximum values for the

ith end-system resource type and network bandwidth
respectively,wi (1 ≤ i ≤ (m+1), m is the number of
all end-system resource types) are nonnegative values so
that

m+1∑

i=1

wi = 1 (3)

For any end-system resource typeri (e.g., CPU, disk

storage),r
B
i −rD

i

rmax
i

is a normalized value ranging between
−1 and 1, while wi represents its significance. Gen-
erally, we assign higher weights for more critical re-
sources. For the network resource type,bB,A−bD,C

bmax is a
normalized value between−1 and1, wherewm+1 repre-
sents the importance of the network resource. For exam-
ple, Figure 3 (c) illustrates such a QoS consistent short-
est path (thick line). The computation complexity of the
QCSalgorithm isO(KV 2), whereV is the number of

3Since the sink service (start point of the graph) is the common part
of all possible service paths, its resource requirements are not included
in the calculation.

candidate service instances,K is the number of candi-
date service instances for the source service.

Thus, the final result generated by theservice com-
poser is a QoS consistent service path satisfying the
user’s end-to-end QoS requirements and also has the
minimum aggregated resource requirements. However,
due to the redundancy property of P2P systems, each
chosen service instance can be provided by multiple dif-
ferent peers. Hence, we propose thedynamic peer selec-
tion tier to map the service instance nodes onto the peer
nodes and dynamically choose the most suitable peers to
execute those service instances.

3.3 Dynamic Peer Selection

This section describes the dynamic peer selection tier
in the QoS-aware service aggregation (QSA) model. The
peer selection decision is made based on the resource re-
quirements of the service instances and the performance
information of different candidate peers. However, there
are two difficulties for selecting proper peers in P2P sys-
tems: (1) each peer can only maintain the up-to-date
performance information for a small number of peers
for scalability; and (2) the required performance infor-
mation is distributed and includes multiple factors such
as the peer’s uptime, system load, and network band-
width/latency. Hence, we make the following design de-
cisions for thedynamic peer selectiontier, represented
by thepeer selector:

• Distributed and hop-by-hop peer selection.
Since it is impossible for each peer to have the
global view of the up-to-date performance infor-
mation, the peer selection has to be performed in a
distributed and hop-by-hop manner. To be specific,
for an n-hop service aggregation, each peer, start-
ing from the user’s host, chooses the most suitable
next hop peer among all candidate peers, accord-
ing to its locally maintained performance informa-

5



0


4


5


6


7


1


2


3


8


9


10


2
 7
 11


?

0


4


5


6


7


1


2


3


8


9


10


?
 0


4


5


6


7


1


2


3


8


9


10


(a)
 (c)
 (d)


0


4


5


6


7


1


2


3


8


9


10


?
User
 User
 User
 User


(b)
0
 2
 7
 11
 0
 2
 7
 11
0


(b)


Generated distributed

application delivery by mapping

the selected service instances


onto proper peer nodes


0
 2
 7
 11


0
 1
 5
 9

0
 2
 7
 11


Service instance
 Service

aggregation flow


Peer
 Selected peer

Peer group providing the

same service instance


Figure 4. Illustration of distributed, hop-by-hop dynamic peer selection.

tion. Then, the peer selected in this step will be re-
sponsible for choosing the next hop peer and so on.
Note that the peer selection procedure is performed
in the reverse direction of the service aggregation
flow. Figure 4 illustrates the process of dynamic
peer selection in a four-hop service aggregation us-
ing the service path shown in Figure 3.

• An integrated and configurable metric for peer
selection.Now we focus on a single peer selection
step in which the current peer needs to choose the
next hop peer according to its locally maintained
performance information. If the candidate peers’
performance information is not available, the peer
selection falls back to a random policy. Otherwise,
thepeer selectorfirst chooses among all candidate
peers according to the match between (1) the can-
didate peer’s uptime and the application’s session
duration for better tolerance to P2P systems’ topo-
logical variation4; (2) the candidate peer’s resource
availability and the service instance’s resource re-
quirements. Second, if multiple peers qualifies, the
peer selectoruses an integrated and configurable
metric Φ to choose the best one. The metricΦ is
proposed to tackle the problem of composite-value
decision-making for peer selection. For this pur-
pose, we defineRA as the candidate peer’s end-
system resource availability, andβ as the end-to-
end available network bandwidth from the candi-
date peer to the current peer. The resource avail-
ability vector RA and the resource requirement
vectorR represent the same set of resources and
obey the same order. In addition, we defineb as
the service instance’s required network bandwidth.
Based on the above definitions, the metricΦ can be
defined as follows:

Φ =
m∑

i=1

ωi · rai

ri
+ ωm+1 · β

b
(4)

4The uptimes of all participating peers must be greater than the
application’s session duration. Otherwise, if any of them leaves during
the session, the application delivery fails.

whereωi (1 ≤ i ≤ (m+1)) are nonnegative values
so that

m+1∑

i=1

ωi = 1 (5)

The peer selectorchooses the best candidate peer
which maximizes the value of the above metricΦ.
The value ofΦ represents theadvantageof select-
ing a specific peer to execute the service instance.
First, for any end-system resource typeri (e.g.,
CPU, memory, disk storage),rai

ri
is a normalized

value which means that the larger ratio between the
resource availability and the resource requirement
is, the more advantageous it is to select this peer
for achieving load balance in heterogeneous P2P
systems. β

b represents the same meaning for the
network bandwidth. In order to allow customiza-
tion, we introduceωi (1 ≤ i ≤ m + 1) to rep-
resent the importance of theith resource type in
making the peer selection decision. They can be
adaptively configured according the application’s
semantics and user’s preference.

• Dynamic neighbor resolution. According to the
neighbor definition introduced in Section 2.2, the
resolution of the neighbor list at each peer is dy-
namic and depends on the results from theservice
composer. Thus, the neighbor list at each peer
is updated using thedynamic neighbor resolution
protocol. To be specific, after theservice composer
generates a service path, it first updates the local
host’s direct neighbor list to include those candi-
date peers which provide the services on the service
path. Then it notifies all candidate peers to update
their indirect neighbor list to include those peers
which provide the preceding services on the ser-
vice path and so on. The neighbor list at each peer
is maintained as soft states. Thus, the above notifi-
cation messages are sent periodically to refresh the
soft states as long as the service path is valid and
needed.

6



At the end of thedynamic peer selectionphase, the
distributed application delivery can be started by back-
tracking the generatedpeer path.

4 Simulation Results

In this section, we evaluate the performance of the
QoS-aware service aggregation (QSA) model by simu-
lation. We first describe our evaluation methodology.
Then we present and analyze the simulation results.

4.1 Evaluation Methodology

We simulated a large-scale P2P system of104 peers.
Each peer is randomly assigned an initial resource avail-
ability RA = [cpu,memory], ranging from [100,100]
to [1000,1000] units. Different units reflect the het-
erogeneity in P2P systems. For example, if we assign
[100,100] units to a laptop, then we probably need to
assign [500, 500] units to a desktop PC, and [1000,
1000] to a powerful cluster-based server. The end-to-end
available network bandwidth between any two peers is
defined as the bottleneck bandwidth along the network
path between two peers, which is initialized randomly as
10M, 500k, 100k, or 56k bps. The network latency be-
tween two peers are also randomly set as 200, 150, 80,
20, or 1 ms [12].

The QSA algorithms are locally executed on each
peer. They include processing user request, composing
services, selecting peers and periodically probing neigh-
bor peers. In our experiments, the maximum number of
neighbor peers any peer can probe (M ) is 100 so as to
control the probing overhead within100/10000 = 1%.
During each minute, certain number of user requests
are generated and assigned on a set of randomly chosen
peers. The user request is represented by any of the 10
distributed applications whose service path lengths are
between 2 to 5 and whose session durations are between
1 to 60 minutes. The user’s QoS requirement is specified
by a single parameter which has three levels: high, av-
erage, and low. Each service instance is also randomly
assigned values for itsQin, Qout andR parameters. The
number of different service instances for each service is
randomly set between 10 to 20. The number of peers
which provide a specific service instance is randomly set
between 40 to 80. The importance weights for different
resource types are uniformly distributed.

The metric we use for evaluating the performance
of theQSAalgorithm is theservice aggregation request
success ratio, calledψ. A service aggregation request is
said to be successful if and only if during the entire ap-
plication session, all service instances’ resource require-
ments are always satisfied by the resource availability
along the aggregation path. On other words, a service

aggregation request is failed when its resource require-
ments cannot be satisfied or one of provisioning peers
leaves during the session. The metricψ is defined as the
number of successful requests over the total number of
all requests. Higher service aggregation request success
ratio represents improved service availability and better
load balance in heterogenous P2P systems. For com-
parison, we also implement two common heuristic algo-
rithms: randomandfixedalgorithms. Therandomalgo-
rithm randomly chooses a QoS consistent service path
(without considering the aggregated resource consump-
tion) and randomly selects a set of provisioning peers
for instantiating the service path. Thefixed algorithm
always picks the same service path for a distributed ap-
plication delivery and chooses the dedicated peers to in-
stantiate the service path. Thefixedalgorithm actually
represents the conventional client-server systems.

The major goals of theQSAalgorithm are to achieve
better performance and higher tolerance to P2P systems’
topological variation. Hence, we conduct two sets of ex-
periments to evaluate how well theQSAalgorithm meets
these goals. In the first set of experiments, we assume
that there is no topological variation in P2P systems. We
study theQSA’s ability to achieve better performance
than therandomandfixedalgorithms. In the second set
of experiments, we consider the topological variation in
P2P systems. We study theQSA’s resilience to the topo-
logical variation, compared with therandomandfixed
algorithms. In both sets of experiments, we use theser-
vice aggregation request success ratioψ as the perfor-
mance metric.

4.2 Results and Analysis

Figure 5 and Figure 6 shows the simulation results
for the first set of experiments which do not consider the
topological variation in P2P systems. In Figure 5, the
X axis represents different service aggregation request
rate, calculated by the number of requests per minute.
The range of request rate is selected to reflect differ-
ent workload of the P2P system. The Y axis shows the
average service aggregation success ratio (ψ) achieved
by theQSA, randomandfixedalgorithms. Each aver-
age success ratio value is calculated and averaged over
a period of 400 minutes. The results show that the aver-
age success ratio of theQSAalgorithm is always higher
than the other two heuristic algorithms under all request
rates. The reason is that theQSAalgorithm reduces the
overall workload of the P2P system by choosing the
service path with minimum aggregated resource con-
sumption. Moreover, theQSAalgorithm achieves better
load balance by always selecting the peers which have
the most abundant resources. Therandom algorithm
achieves lower success ratios than theQSAalgorithm,

7



0

20

40

60

80

100

0 200 400 600 800 1000

av
er

ag
e 

se
rv

ic
e 

ag
gr

eg
at

io
n 

re
qu

es
t s

uc
ce

ss
 r

at
io

 (
%

)

request rate (req/min)

Our QSA Algorithm
Random Algorithm

Fixed Algorithm

Figure 5. Average success ratio under
different service aggregation request
rates , over a period of 400 minutes with-
out topological variation.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

se
rv

ic
e 

ag
gr

eg
at

io
n 

re
qu

es
t s

uc
ce

ss
 r

at
io

 (
%

)

time (min)

Our QSA Algorithm
Random Algorithm

Fixed Algorithm

Figure 6. Success ratio fluctuation
within a period of 100 minutes, for the
request rate = 200 req/min without topo-
logical variation.

0

20

40

60

80

100

0 50 100 150 200

av
er

ag
e 

se
rv

ic
e 

ag
gr

eg
at

io
n 

re
qu

es
t s

uc
ce

ss
 r

at
io

 (
%

)

topological variation rate(peers/min)

Our QSA Algorithm
Random Algorithm

Fixed Algorithm

Figure 7. Average success ratio un-
der different topological variation rate
(peers/min) over a period of 60 minutes
with request rate = 100 req/min.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

se
rv

ic
e 

ag
gr

eg
at

io
n 

re
qu

es
t s

uc
ce

ss
 r

at
io

 (
%

)

time (min)

Our QSA Algorithm
Random Algorithm

Fixed Algorithm

Figure 8. Success ratio fluctuation
within a period of 60 minutes, for the re-
quest rate = 100 req/min, and topologi-
cal variation rate = 100 peers/min.

but much higher success ratios than thefixedalgorithm.
Such results reflect the prominent advantage of P2P sys-
tems compared to the traditional client-server systems
due to its natural redundancy property for better load
balance. Figure 6 gives a more detailed picture about
the success ratio fluctuations under a particular request
rate (200 requests/minute). Each run of simulation lasts
100 minutes and the success ratio value is sampled every
2 minutes. We observe that the success ratio ofQSAis
consistently higher than those ofrandomandfixed. The
former may be higher than the latter two as much as 15%
and 90%, respectively.

The second set of simulation results are illustrated in
Figure 7 and Figure 8. In this set of experiments, we
consider the topological variation in P2P systems, which
is measured by the number of peers leaving or arriving

every minute. Figure 7 shows the average success ratios
achieved byQSA, randomandfixedunder different topo-
logical variation rates. Each run of simulation lasts 60
minutes under a fixed request rate (100 requests/minute).
Figure 8 shows the success ratio fluctuations for a fixed
topological variation rate (100 peers/minute) with a par-
ticular request rate (100 requests/minute). Both simu-
lation results prove thatQSAtolerates topological vari-
ation best and uniformly achieves the highest success
ratio. The reason is that whenQSAselects among can-
didate peers for instantiating a service instance, it takes
the peers’ average uptimes into account butrandomand
fixeddo not. TheQSAalgorithm always chooses those
peers connected to the P2P system for an average dura-
tion which is longer than the application’s session du-
ration in hope that those peers will continue to be con-

8



nected with the P2P system for at least the same dura-
tion. However, such a heuristic cannot be true all the
time. Hence, the results in Figure 7 and Figure 8 show
that the performance of P2P systems is very sensitive to
the topological variation, even with a small number of
peer arrivals/departures (≤ 2% total peers). Under such
circumstances, we do need runtime failure detection and
recovery to improve the performance.

5 Related Work

Recently, P2P systems have drawn much research at-
tention with the popularity of P2P file sharing appli-
cations such as Gnutella and Napster. However, most
of the research work, such as Chord [20] and CAN
[16], focuses on providing an efficient lookup service
which enables the data (e.g., mp3 files) and resource
(e.g., disk storage) sharing in P2P systems. We believe
that in order to make P2P systems become more suc-
cessful, a scalable and QoS-awareservice sharingsup-
port is also necessary so that various high performance
distributed applications such asmedia-on-demandand
value-added information processingcan be accessed by
the users of P2P systems. Hence, we remedy this situa-
tion by proposing a scalable, QoS-aware service aggre-
gation model for P2P systems.

The problem of service aggregation has been ad-
dressed by different research work. In the Ninja project
[9], service aggregation is performed by composing a
sequence of application-level service operators and con-
nectors into a customized delivery to heterogeneous
clients, which is called aservice path. Since the Ninja
project aims to support client-server based Internet ser-
vices, it presents several limitations when applying to
peer-to-peer systems. For example, it does not support
dynamic peer selection since all services are assumed to
be provided by dedicated servers. Also it does not con-
sider the dynamic and ad hoc membership problem pre-
sented in P2P systems. The authors in [22] proposed an
application-level solution for finding multimedia service
path in the media service proxy network. The service
path finding takes into account the end-to-end resource
availability and is integrated with a resource monitoring
mechanism. However, their solution requires each me-
dia proxy to maintain a global view of the entire media
proxy network in terms of resource availability. Hence,
their solution only applies to the small size proxy net-
work, and thus does not meet the scalability requirement
of P2P systems. Finally, in [10], we proposed a central-
ized approach to address the service composition and in-
stantiation problems in ubiquitous computing environ-
ments. We achieved scalability by applying a hierar-
chical design to the ubiquitous computing environment.
However, such a solution is not suitable for P2P systems

which have neither centralized infrastructure support nor
hierarchical organization. Hence, the originality of this
paper comes from the fact that we target to large-scale
P2P systems and meet the scalability challenge by using
a fully distributed solution.

Other closely related work includes different server
selection solutions for the Internet applications such as
the World Wide Web. In [6], the authors propose a dy-
namic server selection scheme which is based on the on-
line measurements of network bandwidth and latency.
Also in [19], the authors study the effectiveness of DNS-
based sever selection scheme which redirects the client
requests to the closest point of service. Our dynamic
peer selection algorithm shares the same idea with the
above work that application-level services should be in-
stantiated selectively based on the dynamic performance
information such as network bandwidth, latency and dis-
tance (hop count). However, since the server selec-
tion solutions only deal with a fixed set of dedicated
servers, they did not meet the new challenges in P2P
systems which are addressed by our dynamic peer selec-
tion solution. For instance, peer selection must consider
the peer’s uptime to deal with the dynamic membership
problem in P2P systems, for assuring high service avail-
ability. Moreover, the dynamic peer selection must be
performed in a distributed manner in order to meet the
scalability requirements of P2P systems.

6 Conclusion and Future Work

We have presented a scalable QoS-aware service ag-
gregation model for providing high performance dis-
tributed applications in peer-to-peer systems. The major
contributions of the paper are as follows: (1) solve two
key problems,service compositionandpeer selectionin
an integrated service aggregation model; (2) present an
on-demand service compositionalgorithm which gen-
erates a quality consistent service path with minimum
aggregated resource requirements while satisfying the
user’s end-to-end QoS requirements; (3) provide a scal-
able dynamic peer selection scheme for instantiating the
service path. We have implemented a simulation testbed
and our initial simulation results illustrate the effective-
ness of the proposed model and algorithms. In the fu-
ture, we will implement a prototype of our model and
test it in the real Internet environment. We will also in-
vestigate how to include other desirable system proper-
ties such as stability and fault tolerance into our model.

7 Acknowledgment

This work was supported by the NASA grant under
contract number NASA NAG 2-1406, NSF under con-
tract number 9870736, 9970139, and EIA 99-72884EQ.

9



Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the
NASA, NSF or U.S. Government. We would like to
thank anonymous reviewers for their helpful comments.

References

[1] Gnutella.http://gnutella.wego.com/.

[2] Napster.http://www.napster.com/.

[3] Tarek F. Abdelzaher. An Antomated Profiling Subsys-
tem for QoS-Aware Services.Proc. of IEEE Real-Time
Technology and Applications Symposium, June 2000.

[4] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Mor-
ris. Resilient Overlay Networks.Proc. 18th ACM SOSP
2001, Banff, Canada, October 2001.

[5] A. P. Black, J. Huang, and J. Walpole. Reifying Commu-
nication at the Application Level.Proc. of ACM Multime-
dia (Multimedia Middleware Workshop), October 2001.

[6] Robert L. Carter and M. E. Crovella. Server Selection
using Dynamic Path Characterization in Wide-Area Net-
works. Proc. of IEEE Infocom 1997, Kobe, Japan, April
1997.

[7] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet:
A distributed anonymous information storage and re-
trieval system. Proc. of the ICSI Workshop on Design
Issues in Anonymity and Unobservability, 2000.

[8] P. Dinda, T. Gross, R. Karrer, B. Lowekamp, N. Miller,
P. Steenkiste, and D. Sutherland. The Architecture of
the Remos System.Proc. of the 10th IEEE International
Symposium on High Performance Distributed Comput-
ing(HPDC 2001), August 2001.

[9] S. Gribble, M. Welsh, R. von Behren, E. Brewer,
D. Culler, N. Borisov, S. Czerwinski, R. Gummadi,
J. Hill, A. Joseph, R. Katz, Z. Mao, S. Ross, and B. Zhao.
The Ninja Architecture for Robust Internet-Scale Sys-
tems and Services.Computer Networks, Special Issue
on Pervasive Computing, 2001.

[10] X. Gu and K. Nahrstedt. Dynamic QoS-Aware Multi-
media Service Configuration in Ubiquitous Computing
Environments. Proc. of The IEEE 22nd International
Conference on Distributed Computing Systems (ICDCS
2002), Vienna, Austria, July 2002.

[11] X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and
D. Xu. An XML-based Quality of Service Enabling Lan-
guage for the Web. Journal of Visual Language and
Computing, Special Issue on Multimedia Language for
the Web, 2002.

[12] Kevin Lai and Mary Baker. Nettimer: A Tool for Mea-
suring Bottleneck Link Bandwidth.Proceedings of the
3rd USENIX Symposium on Internet Technologies and
Systems, San Francisco, California, March 2001.

[13] B. Li and K. Nahrstedt. QualProbes: Middleware QoS
Profiling Services for Configuring Adaptive Applica-
tions. Proc. of IFIP International Conference on Distr-
bited Systems Platforms and Open Distributed Process-
ing (Middleware 2000), April 2000.

[14] K. Nahrstedt, D. Wichadakul, and D. Xu. Dis-
tributed QoS Compilation and Runtime Instantiation.
Proc. of IEEE/IFIP International Workshop on QoS
2000(IWQoS2000), June 2000.

[15] Joseph P.Loyall, David E. Bakken, Richard E.Schantz,
John A.Zinky, David A.karr, Rodrigo Vanegas, and Ken-
neth R.Anderson. QoS Aspect Languages and Their
Runtime Integration. Lecture Notes in Computer Sci-
ence, 1511, May 1998.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network.
Proc. of the ACM SIGCOMM 2001, San Diego, CA,
2001.

[17] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Mea-
surement Study of Peer-to-Peer File Sharing Systems.
Proc. of SPIE Multimedia Computing and Networking
2002 (MMCN’02),San Jose, California, 2002.

[18] S.Frolund and J.Koistinen. QML: A Language for Qual-
ity of Service Specification.Technical Report HPL-98-
10,, February 1998.

[19] A. Shaikh, R. Tewari, and M. Agrawal. On the Effec-
tiveness of DNS-based Server Selection.Proc. of IEEE
Infocom 2001, Anchorage, Alaska, April 2001.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications.Proc. ACM
SIGCOMM 2001, San Diego, California, 2001.

[21] D. Wichadakul, K. Nahrstedt, X. Gu, and D. Xu.
2KQ+: An Integrated Approach of QoS Compilation and
Component-Based, Runtime Middleware for the Unified
QoS Management Framework.Proc. of IFIP/ACM In-
ternational Conference on Distributed Systems Platforms
(Middleware 2001), November 2001.

[22] D. Xu and K. Nahrstedt. Finding Service Paths in a
Media Service Proxy Network. Proc. of SPIE/ACM
Multimedia Computing and Networking Conference
(MMCN’02), San Jose, CA, January 2002.

10


