

Towards a Distributed Platform for
Resource-Constrained Devices

Alan Messer, Ira Greenberg, Philippe Bernadat, Dejan Milojicic
Deqing Chen, T.J. Giuli, Xiaohui Gu
Mobile Systems and Services Laboratory
HP Laboratories Palo Alto
HPL-2002-26
February 4th , 2002*

E-mail: [messer, iragreen, bernadat, dejan] @hpl.hp.com, lukechen@cs.rochester.edu,
giuli@stanford.edu, xgu@students.uiuc.edu

distributed
platform,
Java,
resource
constraints,
mobile
computing

Many visions of the future predict a world with pervasive
computing, where computing services and resources permeate
the environment. In these visions, people will want to execute a
service on any available device without worrying about whether
the service has been tailored for the device. We believe that it
will be difficult to create services that can execute well on the
wide variety of devices that are being developed because of
problems with diversity and resource constraints.

We believe that these problems can be greatly reduced by using
an ad-hoc distributed platform to transparently offload portions
of a service from a resource-constrained device to a nearby
server. We have implemented a preliminary prototype and
emulator to study this approach. Our experiments show the
beneficial use of nearby resources to relieve both memory and
processing constraints, when it is appropriate to do so. We
believe that this approach will reduce the burden on service
developers by masking many of the details of device diversity,
resource limitations, and resource fluctuations.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Towards a Distributed Platform for Resource-Constrained Devices
Alan Messer, Ira Greenberg, Philippe Bernadat, Dejan Milojicic,

Deqing Chen, T.J. Giuli, Xiaohui Gu

HP Labs, Univ. of Rochester, Stanford University, Univ. of Illinois Urbana-Champaign

[messer, iragreen, bernadat, dejan]@hpl.hp.com,
lukechen@cs.rochester.edu, giuli@stanford.edu, xgu@students.uiuc.edu
Abstract
Many visions of the future predict a world with pervasive com-
puting, where computing services and resources permeate the
environment. In these visions, people will want to execute a
service on any available device without worrying about
whether the service has been tailored for the device. We
believe that it will be difficult to create services that can exe-
cute well on the wide variety of devices that are being devel-
oped because of problems with diversity and resource
constraints.

We believe that these problems can be greatly reduced by
using an ad-hoc distributed platform to transparently offload
portions of a service from a resource-constrained device to a
nearby server. We have implemented a preliminary prototype
and emulator to study this approach. Our experiments show
the beneficial use of nearby resources to relieve both memory
and processing constraints, when it is appropriate to do so. We
believe that this approach will reduce the burden on service
developers by masking many of the details of device diversity,
resource limitations, and resource fluctuations.
Keywords – Distributed platform, Java, Resource con-

straints, Mobile computing.

1 Introduction
Many visions of the future describe a world of pervasive
computing, where computers permeate our environment
and way of life [21, 33]. In these visions, computing
resources in our surroundings will provide plentiful
resources to support services in the locale. People will
use a multitude of devices to access numerous resources
and services from their environment, anywhere and at
any time. Numerous projects are exploring this vision in
industry [13, 15, 19, 28], academia [5, 6, 9, 24], and
government [3, 4].

Recently, there has been a growing adoption of early
pervasive devices including mobile phones, personal
digital assistants (PDA), and internet appliances. From
these earlier devices we have identified two interesting
problems in realistically supporting pervasive comput-
ing visions: diversity and resource constraints in mobile
devices. One of the most striking aspects of these early
devices is their diversity, which is caused by differing
requirements and markets. Even in this embrionic mar-
ket, these devices cover a wide range of processing
powers, memory capacities, operating systems, network
capacities, power supplies, and so forth. For example,

enterprise PDAs such as the HP Jornada and the Com-
paq iPAQ are much more powerful than personal PDAs
such as those made by Palm Inc. The amount of diver-
sity increases if we also consider devices purchased
over time.

Resource constraints are becoming a problem as many
of these devices display increased generality. Perhaps
spurred by competitive forces and limited physical
space, many of these devices are becoming more
generic with each revision. For example, observe the
push to add Java virtual machines into mobile phones
and PDAs. Unfortunately, for the foreseeable future,
size, weight, power, and heat factors limit the amount of
resources that can be placed into mobile devices when
compared with their stationary, powered counterparts.

We believe that diversity problems will make it difficult
for software vendors to support all of the different plat-
forms. At the same time, resource constraints will make
it difficult to provide the same full-featured service to all
devices. These issues raise the question of whether these
devices will become truly pervasive if users must con-
tinually upgrade them or must have a detailed under-
standing of their limitations in order to be able to use
services on them.

We propose an approach that allows diverse, resource-
constrained devices to execute the same full version of
an application. The idea is to enhance a mobile device’s
run-time platform so that it can dynamically and trans-
parently establish a distributed platform with the other
computing resources in its environment. If a device
becomes resource constrained at run time and believes it
can beneficially use nearby resources, it automatically
and transparently offloads part of the service to them.
By monitoring execution needs and resource availabil-
ity, the platform can dynamically decide how much of
the surrounding resources to use. As a result, the pro-
posed distributed platform increases the level of abstrac-
tion at which services view the resources of a device.

In this paper, we first introduce our vision of the desir-
able properties for a transparent, distributed platform for
diverse, resource-constrained devices. In Section 3, we
describe AIDE, our approach to realizing an instance of
this conceptual platform for experimentation. We then
discuss the implementation of the AIDE modules in
1

Section 4. In Section 5, we describe the preliminary
experiments we have undertaken with the platform on
some sample applications. Section 6 covers the lessons
that we have learned from our experiments. Section 7
presents a detailed comparison of our work with related
research. Finally, Section 8 describes the future work
that we are considering, and we conclude in Section 9.

2 Distributed Platform
In the future, many environments are expected to con-
tain a multitude of computing devices. These devices
will come in many forms, including desktops, embed-
ded servers and computers (such as a meeting room
server), personal computing devices, and so forth. Each
device may contain many resources, such as processing
or memory, resulting in an enviroment full of computing
resources.

In this environment, we refer to a device that could pro-
vide the use of some or all of its resources to another
device as a surrogate. Devices that may choose to use
resources from surrogates using wired or wireless net-
works we refer to as clients. A device can perform the
role of a surrogate with respect to a client even though it
may be used independently for other purposes. Also, we
view surrogates as having more computing power and
memory than clients, but this isn’t necessary.

We believe that client diversity and resource constraints
can be allievated by transparently using surrogate
resources in this environment. We propose that a distrib-
uted platform can be used to achieve this transparent
resource usage. We refer to the transparent use of surro-
gate resources by a client as offloading, in the sense that
computation and data is offloaded from the client to the
surrogate. Not only does this allow network and mem-
ory resources to be used, this approach also provides the
capability for using processing resources from the surro-
gate. If the necessary resources for a client are not avail-
able at the closest surrogate, multiple surrogates could
be used by the client, or surrogates could offload to
other surrogates to provide access to suitable resources
for the client.

In this paper, we use distributed platform to refer to a
system-level layer that provides a shared execution
environment across two or more machines. This enables
us to focus on the aspects of the platform that we believe
directly relate to the problems of client diversity and
resource constraints. Other aspects such as security,
fault tolerance, and discovery are not covered in this
paper.

We believe that a distributed platform to support trans-
parent offloading for diverse, resource-constrained cli-
ents requires the following features.

Transparent, distributed execution – It should be pos-
sible to execute an application on multiple machines
without the application code being aware that multiple
machines are being used. In addition, the platform
should give the application the appearance of executing
only on the client device. These features allow the plat-
form to hide the complexities of remote execution and
to allow applications to be written more independently
of the underlying hardware.

Application partitioning – It should be possible to
dynamically divide the application at run time into two
(or more) partitions that can be placed on different
devices. Partitioning may take place at any granularity
suitable to the platform and/or application. Partitioning
should produce a partition for the client that it can exe-
cute under its constraints.

Adaptive offloading – To be effective, it should be pos-
sible for the partitioning algorithm to consider the avail-
able resources and the application’s execution patterns.
Based on either resource variation triggers or periodic
re-evaluation, the platform should be able to adapt to
load and execution changes to maintain a good parti-
tioning decision.

Beneficial offloading – The platform should only off-
load a portion of an application if doing so would bene-
fit the user. We define offloading as being beneficial if it
improves the performance of the application (e. g., its
speed or battery life), or if it allows the application to
execute when it was not able to do so before (e. g., it
overcomes a memory limitation). It should also be pos-
sible for the user to specify what is beneficial. For
example, a user may choose to extend battery life at the
cost of slower execution in order to allow the device to
continue functioning.

Ad-hoc platform creation – It should be possible to
create and tear down the distributed platform between a
client and a surrogate at run time. Clients should be able
to determine which surrogate(s) are the most appropri-
ate to be used based on factors such as latency of access
and resource availability.

We envisage this platform being used as seen in Figure
1. A user locates, and obtains an application either over
the network or from local storage and starts to execute it
on the client. While the application executes, the client
platform monitors the application’s execution and the
state of system resources such as memory and network
bandwidth.

When a trigger event occurs, such as resources running
low or periodical re-evaluation, the client platform ana-
lyzes the information it has collected and decides
whether offloading should occur. If it is beneficial to
offload, the client platform will select the components to
2

offload and offload them to one or more surrogates run-
ning the distributed platform. The application will then
continue to execute and monitoring will resume. If the
application tries to access what is now remote data or to
invoke what is now a remote method, the client side of
the distributed platform transparently communicates to
pass execution or access to the surrogate. Similarly, exe-
cution on the surrogate side will transparently refer back
to the client for data accesses and method invocations
on the client.

We believe that a distributed platform with these fea-
tures would provide the following benefits.

• Applications can be written more generically for a
more diverse set of devices because resource con-
straints would need less consideration.

• The division of responsibility between a client and a
surrogate can be dynamically altered based on the
available resources in the network, on the surrogate,
and on the client.

• Component-oriented, monolithic, and client/server
applications can all be supported, as long as compo-
nents can be offloaded independently and information
on component interactions can be gathered.

• Surrounding surrogate resources are used only when
beneficial for the user and application.

Several of these features are available in particular plat-
forms or in other research projects, but no system sup-
ports them all nor are they used in this context. Our
research focuses on investigating the possibilities and
benefits of a platform combining all of these features,
particularly in the area of mobile computing devices.

In this paper, we make the following assumptions to act
as a basis for our investigation and to limit its scope.

• The reliability of communication connectivity
between clients and surrogates will be good enough
that errors would not be a problem to users of our pro-
posed system. Otherwise that reliability can be orthog-
onally added to the platform using existing techniques
such as replication/redundancy.

• Computing resources in the environment will oversup-
ply that required by the environment at any one time.

• Physical devices limitations such as screen size and
user interface constraints will be handled by orthogo-
nal techniques such as transcoding.

3 Approach

To investigate this vision, we built, AIDE, an example
realization of our distributed platform. AIDE consists of
three platform modules to monitor application execu-
tion, partition the workload according to a policy, and
support migrating and executing offloaded components
transparently. We implemented both a prototype and a
trace-driven emulation that share the AIDE modules.
The prototype allows validation and demonstration for a
limited set of applications and features. The emulator
allows full-featured, repeatable experimentation.

While transparent, distributed execution has been
achieved in several settings [14], we based our imple-
mentation on Java virtual machines (JVM). Using Java
resolves many of the standard heterogeneity and library
problems, and allows us to use many applications that
have already been written in Java.

In this section, we describe how we realized our trans-
parent, distributed platform. First, we describe our
approach to deriving the types of Java components we
selected for investigation. We then describe the steps we
took to adapt two JVMs into a virtual transparent plat-
form. Next, we present our approach for partitioning
monolithic Java applications. We end with a description
of how we extract execution and resource information
from the JVM at run time.

3.1 Componentization

When viewed at a high level, a Java application is writ-
ten as a single monolithic unit or as a group of interact-
ing components built from a component-oriented toolkit
such as Sun’s JavaBeans. Some research has been done
into statically partitioning an application that was com-
pased of high-level components [12]. However, for our
approach we require dynamic partitioning at run time. In
addition, we would also like to handle monolithic appli-
cations, which account for most applications in the Java
language.

Looking more closely, all Java applications can be con-
sidered component oriented because they are all com-
posed of objects and classes. Thus, there are three

Figure 1: A high-level view of the interaction and operation of
the proposed distributed platform for diverse, resource-con-
strained devices.

Client Surrogate

Local
Storage

Distributed
Platform

10

10

01

0

?

10

10

01

10

10

01

?

10

10

01

Partition

Offload

The InternetThe Internet
3

component granularities: objects, classes, and higher-
level components such as JavaBeans. From our prespec-
tive each level influences the overhead of execution
monitoring, the accuracy and flexibility of offloading,
and the type of support required for remote execution.

For our current investigation, we selected classes as the
application components because they are a middle
ground among these options. As a result we hope to
understand the influence of this choice on component
granularity and the performance/storage overhead of
monitoring. We also ruled out higher-level components
for initial investigation because comparatively few
applications are constructed using them. In the future,
we plan to consider the ability to include their additional
semantic information in the partitioning decision.

3.2 Transparent, Distributed Execution

Java’s existing support for remote execution, RMI,
requires applications to be written with explicit inter-
faces. This provides excellent support for client/server
application programming, but client diversity would
require new client/server applications to be written for
each combination. This limitation prevents us from
using RMI to support the necessary fully transparent
execution of objects across multiple machines.

To overcome this limitation, we modified the JVMs so
that objects can be transparently migrated between the
client and surrogate. In a JVM, an object is uniquely
identified by an object reference. To support remote
execution, we modified the JVM to flag object refer-
ences to remote objects and then intercept accesses to
remote objects. Using these hooks, our modules convert
remote accesses into transparent RPCs between two
JVMs. Either JVM that receives a request uses a pool of
threads to perform RPCs on behalf of the other JVM.
Using this approach, threads are not migrated. Instead,
invocations and data accesses follow the placement of
objects.

This support brings out several issues that must be
addressed to support the goal of providing a transparent
distributed platform between the JVMs.

• Native methods. Java applications must ultimately
call native methods to perform certain functions.
These methods cannot be migrated because they are
implemented with native code. In addition, native
methods may have different effects on different plat-
forms if they use local state, which cannot be accessed
by the JVM. To solve this problem, native invocations
are directed back to the client JVM. This gives appli-
cations the appearance of executing on the client even
though part of their execution is on a surrogate. In
some cases, as shown in Section 5.2, some of these

constraints for native methods can be relaxed while
still providing a transparent platform.

• Static functions and data. Static functions and data
are shared between object instances. Like native meth-
ods, some static data in the JVM may also contain data
that is specific to the implementation or host where it
is located. For example, System.properties contains
<key, value> pairs specifying information such as the
name of the host operating system. Static functions
may execute on either JVM as long as their implemen-
tations are equivalent. However, to ensure the consis-
tency of static data, we chose to direct access back to
the client JVM.

• Object references. Each JVM has a private object ref-
erence namespace and does not understand an object
reference from another JVM. To overcome their
namespace limitations, we modified the JVMs to map
each others references into their own namespace. To
acheive this, each JVM keeps stub local references for
remote objects as a placeholder. Then when one JVM
invokes a method or accesses an object on the other
JVM, it sends an operation referring to that object
using its local object reference. The receiving JVM
then maps these references to its own real local refer-
ences for the objects. As a result, the two JVMs main-
tain object reference mappings when objects and
object references move between the VMs.

3.3 Partitioning

Our approach to determining whether a beneficial off-
loading exists is to reduce the problem to finding an
appropriate partitioning a graph of the application’s exe-
cution history. The rational behind this idea is that if two
components interact frequently (e. g., because of many
method invocations), then the graph will reflect this sit-
uation with a high-weight edge. Any partitioning policy
should have a high probability of placing frequently
interacting components together on one machine or the
other, because splitting them across the network could
severely affect performance

Assuming that the execution history reflects future exe-
cution, we use the execution history to predict the appli-
cation’s future behavior. We believe that combining this
information with resource availability information will
allow a partitioning policy to effectively select a parti-
tioning that balances the application’s resource require-
ments, the system’s resource availabililty, and the user’s
preferences.

Finding the best partitioning of an execution graph is an
NP-Complete problem. Several approaches exist for
splitting a graph to obtain a good solution based on the
weights of the edges, but they do not necessarily result
in a good partitioning. For example, one of the most
4

popular heuristics is MINCUT, which bisects a graph
along the cut with the fewest interactions or the smallest
interaction weight. However, it may simply remove a
single component, which may not free enough memory
to satisfy the partitioning policy.

To solve this problem, we developed a heuristic that
produces a group of approximate minimum cut parti-
tionings. We then evaluate all of these partitionings and
select the one that best satisfies the partitioning policy.
The heuristic is derived from the MINCUT heuristic
developed by Stoer and Wagner [27].

In their approach, they place one node in one partition
and the rest of the nodes in another partition. They then
move into the first partition the node in the second parti-
tion with the greatest connectivity to the first partition.
This process is repeated until the first partition contains
all but one of the nodes. The minimum cut is the parti-
tioning with the lowest interpartition weight.

Our heuristic begins by placing all of the nodes that rep-
resent classes that cannot be offloaded, such as classes
that contain native methods, into the first partition. This
is the partition that will remain on the client device. We
then follow the MINCUT heuristic, moving one node at
a time.

All of these intermediate partitionings are evaluated
according to the partitioning policy (see Figure 2). The
partitioning that is selected may not have the minimum
interaction cost, but it will satisfy the overall policy
best. The number of partitionings that will be evaluated
is smaller than the number of components.

A particular intermediate partitioning is evaluated by
applying a cost function that represents part of the parti-
tioning policy. In this paper, we use a cost function that
returns the historical amount of information transferred
between the two partitions. The partitioning policy then
selects among the candidate partitions to determine
whether any part of the application can be beneficially
offloaded. If so, it determines whether components can
be offloaded without severely affecting other metrics
and constraints. For example, in the prototype, we add

the restriction that at least a certain amount of memory
must be freed by any partitioning. If no such partitioning
exists, then offloading does not occur. Conceptually, this
policy offloads a sufficient amount of information while
placing the smallest demand on network bandwidth.

3.4 Execution and Resource Monitoring

Information needs to be collected about an application’s
execution while it executes in order to be able to parti-
tion an application. This is accomplished by augmenting
the JVM’s code for method invocations, data field
accesses, object creation, and object deletion. The infor-
mation is obtained at the object level and aggregated to
the class level. The prototype collects the amount of
memory occupied by the objects of a class, the number
of interactions between two classes, and the amount of
information exchanged between two classes as repre-
sented by the parameters and return values used in inter-
class interactions.

The execution information is represented as a fully con-
nected weighted graph representing the execution graph,
to reflect the application’s execution history. Each node
represents a class and is annotated with the amount of
memory occupied by the objects of that class. Each edge
represents the interactions between two classes and is
annotated with the number of interactions between
objects of the classes and the total amount of informa-
tion transferred between objects of the classes.

For a partitioning to remain effective as the environment
changes, the partitioning process also needs to adapt to
be suitable to the underlying resource constraints. For
the purposes of this paper, we focus on memory as the
primary constraint, although in Section 5.2, we also
examine processor load. To monitor the constraints on
memory, the prototype tracks the amount of free space
in the Java heap with information obtained from the
JVM’s garbage collector. The AIDE modules can then
use this information to determine whether objects will
fit into the VM, and to detect when memory is becoming
constrained.

4 Implementation
To study the distributed platform, we implemented a
prototype and emulation of the approach described in
Section 3. The prototype executes under Linux on HP
PCs and under Windows CE on HP Jornadas. It supports
the distributed execution of monolithic Java programs,
and performs a single offloading from a client to a single
surrogate server.

The prototype was built by modifying HP’s Chai VM,
version 5.1. The general architecture of the prototype is
displayed in Figure 3. Three modules containing
approximately 3,000 lines of C++ code were added. The

Figure 2: Multiple partitionings of an execution graph
(denoted by the dashed lines.)
5

monitoring module records execution monitoring infor-
mation as a weighted execution graph. The partitioning
module applies the modified MINCUT heuristic to the
execution graph according to a built-in partitioning pol-
icy and offloads selected objects to the surrogate. The
remote invocation module implements RPCs between
the VMs and manages external object references. Sev-
eral hundred additional lines of code, which are scat-
tered throughout the Chai VM, extract execution and
resource monitoring information and redirect remote
invocations and data accesses. The modifications were
designed and accomplished in reasonable time taking
approximately five person-months.

Currently, graph partitioning is performed solely on the
client JVM. Distributed monitoring of the application’s
execution and distributed partitioning of the execution
graph would be more suitable in a real-world solution.

To simplify the platform, we assumed that both VMs
have access to the application’s Java bytecodes. This
allows both VMs to have common knowledge about the
application. In a real-world implementation, the surro-
gate would have to acquire the necessary bytecodes
from the client or another device, or have them installed.

The emulator executes the same three modules that are
used in the prototype. The Chai VM is replaced with a
wrapper that is used to play back execution and resource
traces into the modules. The traces for an application
were extracted from the prototype while running the
application to completion on a single PC. The emulation
is able to repeatedly repartition an application, exploit-
ing its ability to easily share information between the
emulated VMs.

Distributed execution of an application trace by the
emulator is assumed to be equivalent to serial execution
of the trace. That is, after partitioning, execution moves
between the two emulated VMs synchronously, and the

two VMs do not execute application code simulta-
neously.

The emulator simulates remote communication by
stretching simulated execution time to account for
remote invocations and data accesses. In the emulator,
remote communication is based on an 11Mbps Wave-
LAN link with a 2.4ms round-trip time for a null mes-
sage.

Unless otherwise stated, the prototype and emulator
require static data to be accessed on the client VM and
native methods to be executed on the client VM. Other
data can be offloaded, and static methods written in Java
(i. e., those associated only with a class) can execute
locally on either VM. New objects are always created on
the VM that performs the creation operation. Finally, a
simple distributed garbage collection scheme is sup-
ported to account for objects that are referenced from
the other VM.

5 Experiments
We performed several experiments to gain an under-
standing of the operation and performance of the pro-
posed platform. The first group of experiments focused
on offloading processing and memory to alleviate mem-
ory constraints, while the second group of experiments
addressed computing constraints. In the future, we plan
to examine both types of constraints together. Table 1
lists the applications that were studied. They represent a
variety of application characteristics and resource
demands.

In Section 5.1, we examine the use of offloading to
relieve memory constraints. First, our prototype is used
to offload data and computation when the JavaNote
application runs out of memory. We then use our emula-
tor to study the cost of remote execution overhead for
several applications. This is followed by a discusion of
three important issues related to this overhead: the
dynamic selection of partitioning policies, component
granularity, and native method execution. Finally, we
investigate the performance and storage overhead of
execution monitoring in the prototype. In Section 5.2,
we employ the emulator to study the use of offloading to
relieve computing constraints.

Constrained Device

Windows CE

Monitor
Partition
Remote

ChaiVM

Linux

ChaiVM

Java Java Java Java

Obj.func(x)

Embedded Server

Offload

Monitor
Partition
Remote

Constrained Device

Windows CE

Monitor
Partition
Remote

ChaiVM

Linux

ChaiVM

Java Java Java Java

Obj.func(x)

Embedded Server

Offload

Monitor
Partition
Remote

Figure 3: The overall architecture of the distributed platform
based on the Chai VM.

Name Description Resource Demands
JavaNote Simple text editor Memory intensive

Dia Image manipulation Memory intensive
Biomer Molecular editing Memory/CPU intensive
Voxel Fractal landscape CPU intensive, interactive
Tracer Interactive Raytracer CPU intensive, interactive

Table 1: Java applications used for experiments.
6

5.1 Offloading under Memory Constraints

Initially, we investigated the use of offloading when
memory becomes constrained. This problem is interest-
ing because memory is a finite resource (unlike process-
ing) and can easily be exhausted on small devices.

Avoiding Memory Constraints

The scenario for the first experiment used JavaNote to
load and edit a 600KB text file. When executed on an
unmodified version of the Chai VM with a 6MB Java
heap, the application runs out of memory and fails.
When executed on our prototype, the lack of available
memory is detected, data and computation is offloaded
to the surrogate, and execution continues.

In the prototype, memory consumption is represented by
the amount of free memory in the Java heap after each
garbage collection cycle. Chai (and hence the prototype)
uses an incremental mark-and-sweep algorithm that is
triggered by space limitations, the number of objects
created since the last collection, and the amount of
memory occupied by objects created since the last col-
lection. This causes the garbage collector to perform at
least a partial sweep often, which produces frequent
memory usage updates. In the policy that was used, par-
titioning is triggered when three successive garbage col-
lections indicate that extra memory cannot be freed or
that less than 5% of memory is available.

While executing JavaNote, the prototype monitors the
application’s execution and constructs an execution
graph. Figure 4 illustrates the complexity of an actual
application execution graph. Figure 4a shows the execu-

tion graph at the moment when the application runs out
of memory.

The modified MINCUT heuristic is applied to the graph
in Figure 4a to look for a suitable partitioning. The parti-
tioning policy that was used required any acceptable
partitioning to free at least 20% of the Java heap. The
goal of the policy is to free a sufficient amount of heap
while minimizing the network bandwidth caused by
remote interactions.

Figure 4b illustrates the partitioning that is selected.
Two subgraphs are formed based on offloading both
data and computation. The objects in the classes repre-
sented by the left subgraph remain on the client, and the
objects in the classes represented by the right subgraph
are offloaded to the surrogate. The partitioning heuristic
took approximately 0.1 seconds to compute on a
600MHz Pentium.

Interestingly, the partitioning policy offloaded more of
the Java heap than the required 20% minimum because
it detected that the bandwidth of the interactions was
minimized when approximately 90% of the heap was
offloaded. Application data accounted for most of the
objects that were offloaded. Based on the historical exe-
cution graph, the bandwidth caused by interactions
between the two JVMs is predicted to be only 100KB
per second.

Offloaded Performance

Using the emulator, we then compared the overhead of
remote execution caused by offloading for several appli-
cations. The remote execution overhead was calculated
as the offloading time plus the communication time for

Figure 4: The execution graph for the JavaNote application, when the Java heap is exhausted (Figure 4a) and immediately after
the application is partitioned (Figure 4b). A node represents a class, and an edge represents interactions (method invocations, data
accesses). In Figure 4b, dotted edges represent remote interactions and have been stretched to clearly separate the two subgraphs.
The length of an edge does not represent the strength of the coupling between classes. The lengths are assigned by the graph ren-
dering algorithm as it flattens a multidimensional graph into two dimensions

Figure 4b.Figure 4a.
7

remote interactions. For this experiment, the same pro-
cessor speed was used for both the client and the surro-
gate, and communication was based on a WaveLAN
link. We employed the same triggering and partitioning
policies that were described in the previous section. In
Figure 5, which shows the results of the experiment, the
overhead for JavaNote and Dia seems reasonable at
4.8% and 8.5% respectively, but the overhead for
Biomer is much worse at 27.5%.

We have identified three causes for the high overhead,
especially for Biomer. First, the policy used may not be
appropriate for the application. Attempting to free less
memory or to free memory at a different trigger point
might have produced a lower overhead. Second,
because a class is the unit of placement, all of the
objects in a class will be moved to the same site even
though some of the objects are highly referenced only
on the client while others are highly referenced only on
the surrogate. This can be a problem for common
generic types, such as String or Integer. Third, execution
access patterns may cause objects on the surrogate to
frequently reference objects that must remain on the cli-
ent, such as native methods for screen updates.

Effect of Policy on Performance

To evaluate the effect of the triggering and partitioning
policies on the remote execution overhead, we reparti-
tioned the same execution traces under multiple poli-
cies. The partition triggering threshold was varied from
when 2% to 50% of memory remained free, the toler-
ance to low-memory signals from the garbage collector
was varied from one to three events, and the minimum
amount of memory to free was varied from 10% to 80%.

Figure 6 illustrates the minimum overhead observed for
the best policy for each application.

From our experiments, the remote execution overhead
was reduced for Biomer and Dia by between 30% and
43%, but remained the same for JavaNote. Both Biomer
and Dia happened to perform best with a triggering
threshold of 50%, one low-memory signal, and a mini-
mum of between 10% and 80% of memory freed. How-
ever, JavaNote performed best with a triggering
threshold of 5%, three low-memory signals, and a mini-
mum of 20% memory freed. This indicates that the sys-
tem needs to be able to select among policies and policy
parameters to achieve the best performance, based on
analysis, knowledge about the type of the application,
and so forth.

Effect of Granularity on Partitioning

One consequence of using a class as the unit of place-
ment is that the total amount of memory associated with
the objects in a single class can represent a large per-
centage of the memory available for offloading.
Because all of the class’s objects must be placed on one
site or the other, there will be fewer options available for
the partitioning policy. For example, in JavaNote, the
primitive character arrays (which contain the document
being edited, menu items, etc.) account for a large per-
centage of the available memory. It might be desirable
to be able to offload just a selected group of objects
from a class.

A class can be composed of groups of unrelated objects
that are used by the application in different ways.
Another consequence of using a class as the unit of
placement is that all of its objects are forced to reside on
one site, even though some of the objects are highly ref-
erenced only on one site or the other. Forcing all of the
objects to reside on one site can cause a high remote
execution overhead. This issue is explored further in
Section 5.2

0
50

100
150
200
250
300
350
400

JN
ot

e

D
ia

B
io

m
er

Applications

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)
Overhead
Original

Figure 5: Remote execution overhead caused by the initial parti-
tioning policies, which have an offloading threshold of 300KB
(5%) and free at least 20% of memory.

Figure 6: Comparison of the effect of different partitioning
policies on the remote execution overhead.

0
50

100
150
200
250
300
350
400

JN
ot

e
In

iti
al

JN
ot

e
B

es
t

D
ia

In

iti
al

D
ia

B

es
t

B
io

m
er

In

iti
al

B
io

m
er

B

es
t

Applications

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Overhead
Original
8

Effect of Native Methods on Performance

Next, we studied how much the applications depend on
code that must execute on the client device. We mea-
sured the number of references from code executing on
the surrogate to native methods, which have been
required to execute on the client. Figure 7 shows that for
some applications native methods can account for quite
a large percentage of remote accesses (JavaNote, Dia),
while for others it is a relatively small percentage.

Interestingly, however, many of these native methods do
not actually need to execute only on the client because
they are stateless and/or idempotent operations such as
string copy or mathematical functions. With some work,
it may also be possible to allow other native methods
such as file operations to move to the surrogate. How-
ever, some native methods will always have to be exe-
cuted on the client, such as graphical framebuffer
access. Given this, we believe that the number of remote
calls caused by native methods can be significantly
reduced by annotating the methods in the standard Java
library according to their operation type.

Monitoring Overhead

Finally, we measured the performance and storage over-
head of operating the platform without partitioning.
JavaNote was executed on a PC with a 600MHz Pen-
tium using our prototype with monitoring on and with
monitoring off. In both cases, a 600KB file was opened,
and then a small amount of editing and scrolling was
performed on the file. By using an 8MB Java heap, the
application was able to execute without running out of
memory.

When executed without monitoring, the scenario exe-
cuted in an average of 31.59 seconds. When executed
with monitoring, it executed in an average of 35.04 sec-
onds, resulting in a monitoring performance overhead of
11%. We believe that this value can be reduced by add-
ing optimizations to our initial prototype.

Table 2 displays the average execution metrics for sev-
eral runs of the scenario described above. The class and

object events are creation and deletion, and the interac-
tion events are invocation and access. The 1.2 million
interaction events represent interactions between two
classes and are almost evenly divided between invoca-
tions and accesses.

Information is recorded only for interactions between
two different classes. For each such link in the execution
graph, we keep a running total of the number of interac-
tion events and the number of bytes passed between the
two classes. Note that the average number of links
(interactions) is much smaller than the number of inter-
action events. Based on these values, the execution
graph occupies a relatively small amount of storage.
Any additional information needed for a partitioning
decision is obtained from the Java heap and other JVM
data structures.

5.2 Offloading under Processing Constraints

So far, we have considered offloading when memory
becomes constrained. However, just relieving memory
constraints can be achieved by other methods such as
virtual-memory paging or swapping. The real value of
the intelligent, distributed platform approach proposed
here is the ability to offload processing, too. In this sec-
tion, we cover some results related to offloading with
processing constraints as the goal.

To evaluate the effect of partitioning policies on perfor-
mance, we needed to determine the amount of execution
associated with each class. This time was obtained by
extending execution monitoring to calculate the approx-
imate execution time in each method invocation. The
Unix gettimeofday() system call was used to
approximate the time spent in an invocation. The time
spent in a class is the total of the time spent in any of
that class’s methods, and is assigned to the class’s node
in the execution graph. When combined with the inter-
action frequencies already in the execution graph, there
is enough information to approximate the execution
time of pieces of the application.

The mapping of execution time to the execution graph is
illustrated in Figure 8. The execution time assigned to a
class is the time spent in one of that class’s methods
minus the time spent in nested calls to methods of other
classes. Here, it takes 0.12 seconds to execute method
f() in class a, but 0.10 of those seconds are spend in a
nested call to method g() in class b. As a result, only
0.02 seconds are assigned to class a. The ‘1’ over the

0

5000

10000

15000

20000

JavaNote Dia Biomer

Application

N
u

m
b

er
 o

f
In

vo
ca

ti
o

n
s

Total Remote

Leading to Native calls

Figure 7: Comparison of remote native method invocations to
total remote invocations.

Average Maximum Total Events

Classes 134 138 138
Objects 1,230 2,810 6,808

Interactions 1,126 1,190 1,186,532

Table 2: Execution metrics for JavaNote.
9

edge in the execution graph indicates that there has been
one interaction between class a and class b.

For these experiments, the emulator was configured to
have the surrogate execute 3.5 times faster than the cli-
ent. This figure was obtained by comparing the execu-
tion of our applications on a Jornada 547 and a PC.
Communication costs were based on a WaveLAN link.

The results for the applications Voxel, Tracer, and
Biomer are shown in Figure 9. The bar marked “Origi-
nal” represents the application executing only on the cli-
ent. The bar marked “Initial” represents the initial result
for executing the application with offloading. In all
three cases, offloading caused performance to increase
in spite of the faster CPU on the surrogate.

As might be expected, analysis shows that offloading to
improve processing experiences the same problems as
offloading to improve memory usage. In particular,
using a class as the unit of placement and executing

native methods only on the client can lead to high com-
munication overhead.

To better understand the effects of these issues, we
added two simple enhancements to the emulator.
Because many of the native method calls were to math
functions, which are stateless, we modified the emulator
to treat calls to math functions as local. To address the
component granularity issue, we allowed the emulator
to consider primitive integer arrays at an object granu-
larity instead of at a class granularity. These arrays were
fairly common in the applications and were often used
for a variety of unrelated purposes.

The results that were obtained after employing these
enhancements are also shown in Figure 9. The bar
labeled “Native” represents executing the application
with offloading and the native method enhancement, the
bar labeled “Array” represents executing the application
with offloading and the integer array enhancement, and
the bar labeled “Combined” represents executing the
application with offloading and both enhancements.

These results demonstrate that with these two simple
enhancements it is possible to use offloading to improve
the execution speed of some applications (Voxel and
Tracer). For Biomer, the system determined that there
was no beneficial partitioning, and correctly decided not
to offload any objects. Its best partitioning was pre-
dicted to take 790 seconds while the unpartitioned appli-
cation took 750 seconds. However, by partitioning the
application manually, we were able to find a beneficial
partitioning of 711 seconds. More work is needed to
understand and improve offloading in this type of appli-
cation.

While the speedup achieved is modest and the applica-
tions have fairly good computational locality, we
believe that these results are encouraging and can be
improved with further investigation. This may be espe-
cially true for frequently mentioned pervasive comput-
ing tasks such as voice and image recognition.

6 Lessons Learned
We learned the following lessons from our initial inves-
tigations.

• It is feasible to offload without prior knowledge.
Based on our initial experiments, we believe that it is
feasible to adaptively offload data and computation
from a resource-constrained device to a surrogate
device without prior knowledge about the application.
Our experiments were performed without modifying
the application programs, without hints from the appli-
cation developer or the user, and with applications that
weren’t designed for distributed execution. All of the
execution and resource information used by the parti-

a::f() {
b::g();

}

b::g() {

};

0.
12

s

0.
10

s

a b
1

0.02s 0.10s

Figure 8: The mapping of method execution times to an exe-
cution graph. Note that node ‘a’ accounts only for time spent
in method f() of class ‘a’ and does not include time spent in
method g() of class ‘b’.

Execution Event

Execution Graph

Figure 9: Effect of offloading on application performance.
Improvements were achieved by using enhancements for
stateless native methods alone, primitive integer arrays alone,
and both features combined.

0
1000
2000
3000
4000
5000
6000
7000

Voxel Tracer Biomer

Applications

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Original
Initial
Native
Array
Combined
10

tioning policy was gathered and analyzed at run time,
and this was accomplished with reasonable perfor-
mance and storage overhead. In addition, objects were
selected and offloaded at run time with reasonable
overhead.

• Component granularity is important. In an object-
oriented programming language, classes and objects
are the two obvious units to use as the components for
monitoring and offloading. We believe that it will be
necessary to find a middle ground so that the overhead
of execution monitoring and analysis can be kept at a
reasonable level while allowing placement to better
exploit the structure of the application. Perhaps classes
should be used as the unit of monitoring and objects
should be used as the unit of placement. Selective use
of objects as the unit of placement to improve perfor-
mance was shown with primitive arrays in Figure 9.

• Memory constraints can be relieved. We believe that
our approach will increase the ability of clients to exe-
cute memory-constrained applications. For example,
in the experiment described in Section 5.1, JavaNote
would have failed with an out-of-memory error if exe-
cuted on the client device alone. By using memory
offloading, our prototype was able to execute the
application using the client’s Java heap and the surro-
gate’s Java heap.

• Processing constraints can be relieved. We believe
that our approach will enable some applications to be
executed more quickly while using a particular client.
As shown in Figure 9, our emulator was able to pro-
duce performance savings of up to 15%. However, to
achieve these savings, it was necessary to use two
enhancements — offloading primitive arrays on an
object basis and executing math functions on the
device where they were invoked.

• Native methods can degrade performance. We
believe that the simple policy of executing native
methods on the client device can lead to performance
penalties. Further, we believe that significant gains
can be achieved by identifying native methods that are
stateless and executing them on the device on which
they are invoked. These observations were demon-
strated by the experiments in Section 5.2. In order for
this approach to work, the native methods must have
the same interface and behavior on both devices.

• Policies must selected dynamically. To achive satis-
factory performance, we believe that it will be neces-
sary for the system to dynamically select among
partitioning policies and adjust policy parameters.
This was illustrated in Figure 6 where some triggering
and partitioning policies led to significantly lower per-
formance overheads than others. Also, the best poli-

cies were very different from the policy that was
initially selected.

7 Related Work
Offloading functionality from resource-constrained
devices has been used for many years. Client/server
applications and frameworks such as the X Windows
System [25], CORBA [22], and the World Wide Web [1]
provide the ability to write an application in a pre-parti-
tioned fashion. Distributed agents, load-balancing and
process-migration systems have investigated the
dynamic placement problem for programs written as
distributed components [18]. However, such distributed
systems either migrate whole program entities, or
require applications to be written for distributed execu-
tion. Also, they usually assume that the system has a
fairly stable size and load configuration.

Scientific computing has addressed the partitioning of
computation and data across parallel computers using
interaction graphs and partitioning algorithms [10, 27].
We used this research as the basis for our dynamic parti-
tioning algorithm in the context of partitioning Java
applications. Systems such as MultiJav, JavaParty have
investigated distributed Java platforms in the context of
distributed shared memory and cluster computing [2,
23]. Our distributed platform leverages this work to sup-
port transparency for our partitioning and offloading
support.

Coign tackled the problem of fixed client/server parti-
tioning in their work on the profiling-based partitioning
applications [12]. M-Mail saw the need for the adaptive
placement of application modules in client/server appli-
cations based on usage patterns [17]. Work at AT&T and
IBM’s research labs investigated the issues of graph
reduction and optimization by alternative component
replacement for distributed object applications [11].
Most recently, yBase proposed compiler and profiling
techniques to consider partitioning for miniaturized
computers [16].

Several different forms of offloading of applications
between mobile clients and surrogates have been exam-
ined for resource-constrained devices, most notably
with ParcTab, MPad, Infopad, and Wit [30, 31, 32].
Rover took these approaches further by proposing a
general-purpose relocatable object system that can be
used to help mask slow network links [14]. However,
partitioning of the application is left to the programmer
using a specific framework, with placement controlled
by the application. Spectra is investigating self-tuning
automated placement as part of the general Aura vision
[7, 24]. Most recently, on MagnetOS proposes similar
work in the context of sensor networks [26].
11

Odyssey investigated adapting content “fidelity” to sup-
port content delivery to clients through feedback from
the underlying platform [20]. GloMop proposes mobile
clients using transcoding proxies to match content to cli-
ent format and size restrictions [8]. We believe that
these techniques are complementary to those proposed
in this paper and are useful for tackling issues such as
screen size and the absolute level of resource consump-
tion. However, they require applications and transcod-
ing proxies to be rewritten or reconfigured for every
device type. PocketLinux attempts to limit this by
parameterize applications in XML [29].

The most notable method for dealing with resource con-
straint problems is to reduce application functionality.
Typical examples are the lightweight versions of the
popular Office suite included with the PocketPC plat-
form. However, this increases the burden on the user to
understand the features and limitations of yet another
version of the application.

Our work differs from related work by proposing that
applications need not necessarily be rewritten for a
diverse set of devices. Instead, an adaptive, transpar-
ently distributed platform can be used to increase appli-
cation support by automatically using local surrogate
server resources. Transparency can greatly minimize the
cost of developing software on diverse devices. Fine-
grained adaptive application partitioning allows the sys-
tem to respond to changes in load and the environment.
Using these features, we are working towards benefi-
cially assisting resource-constrained, mobile devices
without requiring application rewriting.

8 Future Work
Based on our initial work, we plan to explore a variety
of research avenues.

• Enhance the prototype and emulator. We plan to
add global placement strategies to our prototype with
the goal of placing objects on the most appropriate
device for the current conditions. This approach will
involve moving objects from the surrogate to the cli-
ent device, and will require coordinated execution
monitoring, resource monitoring, and placement anal-
ysis. We also plan to study additional partitioning heu-
ristics besides the modified MINCUT approach that is
currently being used.

• Simultaneously consider multiple constraints. Cur-
rently, processing and memory constraints are being
addressed separately. In the future, we plan to study
them together. In addition, we plan to examine con-
straints on other resources such as network bandwidth
and power.

• Study the effect of garbage collection. We plan to
investigate the effect of garbage collection on the dis-

tributed platform. Some garbage collectors are conser-
vative and leave some garbage at the end of a
collection cycle. If more memory is needed, should
garbage collection be performed again or should off-
loading occur? We plan to study a variety of garbage
collection approaches to determine whether any of
them work better with offloading and whether partion-
ing can be integrated with garbage collection. We also
plan to examine the effects of distributed garbage col-
lection and the implications of offloading garbage.

• Combine offloading and mobility. We plan to exam-
ine application offloading in the context of mobility.
New strategies will be needed to handle the situation
where a user moves from one surrogate’s region to
that of another.

• Consider additional semantic information. We plan
to consider the benefits of exploiting additional infor-
mation about the applications such as hints from users
and developers, previously gathered profiling infor-
mation, and high-level components like JavaBeans.

• Examine additional applications. We plan to study
the behavior of additional applications in order to
understand a broader range of realistic application
structures and workloads.

9 Conclusions
We have presented some of the problems that will be
encountered as we move towards a world of diverse
devices accessing applications as pervasive services.
Based on these problems, we identified the need for a
transparently distributed platform that can adapt to
resource constraints by adaptively offloading computa-
tion and data to nearby machines. We believe that by
using such a platform the burden on application devel-
opers can be reduced, while allowing acceptable service
performance. We also believe that this approach is
applicable to other situations such as wired and embed-
ded networks that can also be resource constrained.

To investigate our vision, we implemented both a proto-
type and an emulator to allow us to investigate the oper-
ation of a particular instantiation of our vision. Using a
modified JVM, transparent remote execution, and exe-
cution statistics gathered at run time, we investigated the
platform for memory and processing constraints. Our
investigations show that for certain applications it is
possible to transparently use remote resources to relieve
resource constraints. Our results also show that using
these resources can improve application performance
and can allow applications to run that would have failed.
We also believe that by intelligently adapting, the plat-
form is able to use remote resources only when they
improve the application’s performance and provide ben-
efit to the user.
12

Acknowledgements
We are indebted to Jason Flynn, Christos Karamanolis,
Emre Kiciman, Todd Poynor, Erik Riedel, and Steve
Richardson for reviewing this paper. Their comments
significantly improved the content and presentation.

References
[1] Berners-Lee, T., et al., “The World-Wide Web,” Commu-

nications of the ACM, 37(8):76–82, 1994.

[2] Chen, X., and Allan, V., “MultiJav: A distributed shared
memory system based on multiple Java virtual machines”,
Proc. of the Conf. on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, June
1998.

[3] Composable High Assurance Trusted Systems (CHATS),
www.arpa.gov/ito/research/chats/.

[4] DARPA ITO Ubiquitous Computing Program, www.ar-
pa.gov/ito/research/uc/.

[5] Dertouzos, M. L., “The future of computing,” Scientific
American, July 1999.

[6] Esler, M., et al., “Next century challenges: data-centric
networking for invisible computing: the Portolano project
at the University of Washington,” Proc. of 5th ACM/IEEE
Conf. on Mobile Computing and Networking, Aug. 15–
19, 1999, Seattle, WA.

[7] J. Flinn, D. Narayanan, and M. Satyanarayanan, “Self-
tuned remote execution for pervasive computing,”. Hot
Topics on Operating Systems (HotOS-VIII), Schloss El-
mau, Germany, May 2001.

[8] Fox, A., Gribble, S. D., Brewer, E. A., and Amir, E.
“Adapting to network and client variability via on demand
dynamic distillation,” Proc. Seventh ACM ASPLOS , pp.
160–170, Cambridge, MA, October 1996.

[9] Gribble, S., “The Ninja Architecture for Robust Internet-
Scale Systems and Service,” Special Issue of Computer
Networks on Pervasive Computing, 2000. http://endeav-
our.cs.berkeley.edu/

[10] Hendrickson, B. and Kolda, T., “Graph partitioning mod-
els for parallel computing,” Parallel Computing, 26:1519–
1534, 2000.

[11] Högstedt, K., Kimelman, D., Rajan, V.T., Roth,T., Weg-
man, M., and Wang, N., “Optimizing Component Interac-
tion,” ACM Workshop on Optimization of Middleware
and Distributed Systems (OM 2001), Snowbird, Utah,
June 18, 2001.

[12] Hunt, G. C. and Scott, M. L., “The Coign Automatic Dis-
tributed Partitioning System.” Proc. of the 3rd OSDI , pp.
187–200, New Orleans, LA, February 1999, USENIX.

[13] IBM Pervasive Computing. http://www-3.ibm.com/pvc/.

[14] Joseph, A. D., et al., “Rover: A Toolkit for Mobile Infor-
mation Access”, in Proc. 15th ACM SOSP, Dec. 1995.

[15] Kindberg, T., et al., “People, Places, Things: Web Pres-
ence for the Real World,” Proc. of the 3rd WMCSA, 2000.

[16] Li, Z., Wang, C., Xu, R., “Computation Offloading to
Save Energy on Handheld Devices: A Partition Scheme,”
ACM CASES’01, Atlanta, November 16-17, 2001.

[17] Lo, H. Y., “M-mail: A case study of dynamic application
partitioning in mobile computing,” Master's thesis, Dept.
of Computer Science, University of Waterloo, May 1997.

[18] Milojicic, D., Douglis, F. and Wheeler,R., “Mobility —
Processes, Computers, and Agents,” ACM Addison-Wes-
ley, Feb. 1999.

[19] Milojicic, D., Messer, A., Bernadat, P., Greenberg, I.,
Spinczyk, O., Beuche, D., Schröder-Preikschat, W., “Ψ —
Pervasive Services Infrastructure,” Technologies for E-
Services, Second International Workshop, TES 2001,
LNCS 2193, Rome, Italy, Sept. 14-15, 2001, pp. 187–200.

[20] Noble, B.D., et al, “Agile Application-Aware Adaptation
for Mobility,” Proc. of 16 SOSP, St. Malo, France, Octo-
ber 1997.

[21] Norman, Donald A., “The Invisible Computer,” MIT
Press, 1998.

[22] Object Management Group, “CORBA: Architecture and
Specification,” Aug. 1995.

[23] Philippsen, M., and Zenger, M., “ JavaParty - transparent
remote objects in Java,” Concurrency: Practice and Expe-
rience, 9(11):1125--1242, November 1997.

[24] Satyanarayanan, M., “Research Challenges in Project Au-
ra,” keynote address at the Ninth IEEE International Sym-
posium on High Performance Distributed Computing,
Pittsburgh, PA, August 2000.

[25] Scheifler, R. W. and Gettys, J., “The X Window System,”
ACM Trans. on Graphics 16:8 (Aug. 1983), pp. 57–69.

[26] Sirer, E. G., Barr, R., Kim, T.W. D, Fung, I.Y.Y. “Automat-
ic Code Placement Alternatives for Ad Hoc and Sensor
Networks,” Computer Science Technical Report 2001-
1853, Cornell University, October 2001.

[27] Stoer, M. and Wagner, F., “A simple min-cut algorithm,”
Journal of the ACM, 44(4):585–591, July 1997.

[28] Sun Microsystems, “The .com Revolution Meets Con-
sumer Appliances,” available at: www.sun.com/990106/
ces/.

[29] TransVirtual Technologies, PocketLinux, http://
www.pocketlinux.com/.

[30] Truman, T., Pering, T., Doering, R., and Brodersen, R.,
“The infopad multimedia terminal: A portable device for
wireless information access,” IEEE Transactions on Com-
puters, 47(10), Oct. 1998.

[31] Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K.,
Goldberg, D., Ellis, J. R. and Weiser, M., “An overview of
the ParcTab ubiquitous computing experiment,” IEEE
Personal Communications, 2(6):28–43, Dec. 1995.

[32] Watson, T., “Effective Wireless Communication through
Application Partitioning,” Fifth HotOS, WA, May 1995.

[33] Weiser, M., “Some Computer Science Problems in Ubiq-
uitous Computing,” CACM, July 1993, 75–84.
13

14

	Towards a Distributed Platform for Resource-Constrained Devices
	Alan Messer, Ira Greenberg, Philippe Bernadat, Dejan Milojicic, Deqing Chen, T.J. Giuli, Xiaohui Gu
	HP Labs, Univ. of Rochester, Stanford University, Univ. of Illinois Urbana-Champaign
	[messer, iragreen, bernadat, dejan]@hpl.hp.com, lukechen@cs.rochester.edu, giuli@stanford.edu, xg...
	Abstract
	Keywords – Distributed platform, Java, Resource constraints, Mobile computing.
	1 Introduction
	2 Distributed Platform
	Figure 1: A high-level view of the interaction and operation of the proposed distributed platform...

	3 Approach
	3.1 Componentization
	3.2 Transparent, Distributed Execution
	3.3 Partitioning
	Figure 2: Multiple partitionings of an execution graph (denoted by the dashed lines.)

	3.4 Execution and Resource Monitoring

	4 Implementation
	Figure 3: The overall architecture of the distributed platform based on the Chai VM.

	5 Experiments
	Table 1: Java applications used for experiments.
	5.1 Offloading under Memory Constraints
	Avoiding Memory Constraints
	Figure 4: The execution graph for the JavaNote application, when the Java heap is exhausted (Figu...

	Offloaded Performance
	Figure 5: Remote execution overhead caused by the initial partitioning policies, which have an of...

	Effect of Policy on Performance
	Figure 6: Comparison of the effect of different partitioning policies on the remote execution ove...

	Effect of Granularity on Partitioning
	Effect of Native Methods on Performance
	Figure 7: Comparison of remote native method invocations to total remote invocations.

	Monitoring Overhead
	Table 2: Execution metrics for JavaNote.

	5.2 Offloading under Processing Constraints
	Figure 8: The mapping of method execution times to an execution graph. Note that node ‘a’ account...
	Figure 9: Effect of offloading on application performance. Improvements were achieved by using en...

	6 Lessons Learned
	7 Related Work
	8 Future Work
	9 Conclusions
	Acknowledgements
	References
	[1] Berners-Lee, T., et al., “The World-Wide Web,” Communications of the ACM, 37(8):76–82, 1994.
	[2] Chen, X., and Allan, V., “MultiJav: A distributed shared memory system based on multiple Java...
	[3] Composable High Assurance Trusted Systems (CHATS), www.arpa.gov/ito/research/chats/.
	[4] DARPA ITO Ubiquitous Computing Program, www.arpa.gov/ito/research/uc/.
	[5] Dertouzos, M. L., “The future of computing,” Scientific American, July 1999.
	[6] Esler, M., et al., “Next century challenges: data-centric networking for invisible computing:...
	[7] J. Flinn, D. Narayanan, and M. Satyanarayanan, “Self- tuned remote execution for pervasive co...
	[8] Fox, A., Gribble, S. D., Brewer, E. A., and Amir, E. “Adapting to network and client variabil...
	[9] Gribble, S., “The Ninja Architecture for Robust Internet- Scale Systems and Service,” Special...
	[10] Hendrickson, B. and Kolda, T., “Graph partitioning models for parallel computing,” Parallel ...
	[11] Högstedt, K., Kimelman, D., Rajan, V.T., Roth,T., Wegman, M., and Wang, N., “Optimizing Comp...
	[12] Hunt, G. C. and Scott, M. L., “The Coign Automatic Distributed Partitioning System.” Proc. o...
	[13] IBM Pervasive Computing. http://www-3.ibm.com/pvc/.
	[14] Joseph, A. D., et al., “Rover: A Toolkit for Mobile Information Access”, in Proc. 15th ACM S...
	[15] Kindberg, T., et al., “People, Places, Things: Web Presence for the Real World,” Proc. of th...
	[16] Li, Z., Wang, C., Xu, R., “Computation Offloading to Save Energy on Handheld Devices: A Part...
	[17] Lo, H. Y., “M-mail: A case study of dynamic application partitioning in mobile computing,” M...
	[18] Milojicic, D., Douglis, F. and Wheeler,R., “Mobility — Processes, Computers, and Agents,” AC...
	[19] Milojicic, D., Messer, A., Bernadat, P., Greenberg, I., Spinczyk, O., Beuche, D., Schröder-P...
	[20] Noble, B.D., et al, “Agile Application-Aware Adaptation for Mobility,” Proc. of 16 SOSP, St....
	[21] Norman, Donald A., “The Invisible Computer,” MIT Press, 1998.
	[22] Object Management Group, “CORBA: Architecture and Specification,” Aug. 1995.
	[23] Philippsen, M., and Zenger, M., “ JavaParty - transparent remote objects in Java,” Concurren...
	[24] Satyanarayanan, M., “Research Challenges in Project Aura,” keynote address at the Ninth IEEE...
	[25] Scheifler, R. W. and Gettys, J., “The X Window System,” ACM Trans. on Graphics 16:8 (Aug. 19...
	[26] Sirer, E. G., Barr, R., Kim, T.W. D, Fung, I.Y.Y. “Automatic Code Placement Alternatives for...
	[27] Stoer, M. and Wagner, F., “A simple min-cut algorithm,” Journal of the ACM, 44(4):585–591, J...
	[28] Sun Microsystems, “The .com Revolution Meets Consumer Appliances,” available at: www.sun.com...
	[29] TransVirtual Technologies, PocketLinux, http:// www.pocketlinux.com/.
	[30] Truman, T., Pering, T., Doering, R., and Brodersen, R., “The infopad multimedia terminal: A ...
	[31] Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K., Goldberg, D., Ellis, J. R. and Wei...
	[32] Watson, T., “Effective Wireless Communication through Application Partitioning,” Fifth HotOS...
	[33] Weiser, M., “Some Computer Science Problems in Ubiquitous Computing,” CACM, July 1993, 75–84.

